模板辅助制造用于蛋白质突破分析的月形通道

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Raghu K. Moorthy, Serena D’Souza, P. Sunthar, Santosh B. Noronha
{"title":"模板辅助制造用于蛋白质突破分析的月形通道","authors":"Raghu K. Moorthy,&nbsp;Serena D’Souza,&nbsp;P. Sunthar,&nbsp;Santosh B. Noronha","doi":"10.1007/s10404-024-02755-7","DOIUrl":null,"url":null,"abstract":"<div><p>Cylindrical column with packed stationary phase is the workhorse of liquid chromatography systems. These stationary phases are commonly classified on the basis of different form factors namely, beads and monoliths for protein chromatography. Monolithic rods are one of the important geometries derived from polymers through complex polymerization schemes with additional requirements such as cross-linkers and specific reaction conditions. To address these practical difficulties and enable ease of fabrication at laboratory scale, acrylic copolymers are hypothesized to perform as a monolithic stationary phase suitable for protein chromatography. The present work proposes a rapid fabrication technique to obtain monolithic rods that could be reconditioned without any of the above additional steps. It is characterized with monolith diameter that could be controlled using acrylic copolymer concentration. Formation of the copolymeric stationary phase inside microchannel led to annular geometry and in turn, demonstrated fabrication of moon-shaped channels (MSCs) for the first time in literature. An online monitoring system facilitated tracer breakthrough analysis with MSCs to report sharp peak front and an estimate of channel void volume. Breakthrough curves with single protein validated the selection of blue dextran as tracer and indicated retention of proteins due to electrostatic interactions on the functional copolymer surface.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis\",\"authors\":\"Raghu K. Moorthy,&nbsp;Serena D’Souza,&nbsp;P. Sunthar,&nbsp;Santosh B. Noronha\",\"doi\":\"10.1007/s10404-024-02755-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cylindrical column with packed stationary phase is the workhorse of liquid chromatography systems. These stationary phases are commonly classified on the basis of different form factors namely, beads and monoliths for protein chromatography. Monolithic rods are one of the important geometries derived from polymers through complex polymerization schemes with additional requirements such as cross-linkers and specific reaction conditions. To address these practical difficulties and enable ease of fabrication at laboratory scale, acrylic copolymers are hypothesized to perform as a monolithic stationary phase suitable for protein chromatography. The present work proposes a rapid fabrication technique to obtain monolithic rods that could be reconditioned without any of the above additional steps. It is characterized with monolith diameter that could be controlled using acrylic copolymer concentration. Formation of the copolymeric stationary phase inside microchannel led to annular geometry and in turn, demonstrated fabrication of moon-shaped channels (MSCs) for the first time in literature. An online monitoring system facilitated tracer breakthrough analysis with MSCs to report sharp peak front and an estimate of channel void volume. Breakthrough curves with single protein validated the selection of blue dextran as tracer and indicated retention of proteins due to electrostatic interactions on the functional copolymer surface.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02755-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02755-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

带有填料固定相的圆柱形色谱柱是液相色谱系统的主力。这些固定相通常根据不同的形式因素进行分类,即用于蛋白质色谱的珠状固定相和整体固定相。整体柱是重要的几何形状之一,它是通过复杂的聚合方案从聚合物中衍生出来的,还需要交联剂和特定的反应条件等额外要求。为了解决这些实际困难并方便实验室规模的制造,我们假设丙烯酸共聚物可用作适用于蛋白质色谱法的整体固定相。本研究提出了一种快速制备技术,可获得整体棒材,且无需任何上述额外步骤即可进行翻新。该技术的特点是可通过丙烯酸共聚物的浓度来控制整体柱的直径。共聚物固定相在微通道内的形成导致了环形几何形状,进而在文献中首次展示了月形通道(MSC)的制造。在线监测系统有助于对 MSCs 进行示踪剂突破分析,报告尖锐的峰值前沿并估算通道空隙体积。单个蛋白质的突破曲线验证了选择蓝色葡聚糖作为示踪剂的正确性,并表明由于功能共聚物表面的静电作用,蛋白质得以保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis

Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis

Cylindrical column with packed stationary phase is the workhorse of liquid chromatography systems. These stationary phases are commonly classified on the basis of different form factors namely, beads and monoliths for protein chromatography. Monolithic rods are one of the important geometries derived from polymers through complex polymerization schemes with additional requirements such as cross-linkers and specific reaction conditions. To address these practical difficulties and enable ease of fabrication at laboratory scale, acrylic copolymers are hypothesized to perform as a monolithic stationary phase suitable for protein chromatography. The present work proposes a rapid fabrication technique to obtain monolithic rods that could be reconditioned without any of the above additional steps. It is characterized with monolith diameter that could be controlled using acrylic copolymer concentration. Formation of the copolymeric stationary phase inside microchannel led to annular geometry and in turn, demonstrated fabrication of moon-shaped channels (MSCs) for the first time in literature. An online monitoring system facilitated tracer breakthrough analysis with MSCs to report sharp peak front and an estimate of channel void volume. Breakthrough curves with single protein validated the selection of blue dextran as tracer and indicated retention of proteins due to electrostatic interactions on the functional copolymer surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信