Journal of Materials Science: Materials in Medicine最新文献

筛选
英文 中文
Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications 嵌入多孔水凝胶基质中的大麻二酚微颗粒用于生物医学应用。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-02-14 DOI: 10.1007/s10856-023-06773-9
Carla David, Jaqueline F. de Souza, Adriana F. Silva, Guillermo Grazioli, Andressa S. Barboza, Rafael G. Lund, André R. Fajardo, Rafael R. Moraes
{"title":"Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications","authors":"Carla David,&nbsp;Jaqueline F. de Souza,&nbsp;Adriana F. Silva,&nbsp;Guillermo Grazioli,&nbsp;Andressa S. Barboza,&nbsp;Rafael G. Lund,&nbsp;André R. Fajardo,&nbsp;Rafael R. Moraes","doi":"10.1007/s10856-023-06773-9","DOIUrl":"10.1007/s10856-023-06773-9","url":null,"abstract":"<div><p>In this study, poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with cannabidiol (CBD) were synthesized (PLGA@CBD microparticles) and embedded up to 10 wt% in a chondroitin sulfate/polyvinyl alcohol hydrogel matrix. In vitro chemical, physical, and biological assays were carried out to validate the potential use of the modified hydrogels as biomaterials. The microparticles had spherical morphology and a narrow range of size distribution. CBD encapsulation efficiency was around 52%, loading was approximately 50%. Microparticle addition to the hydrogels caused minor changes in their morphology, FTIR and thermal analyses confirmed these changes. Swelling degree and total porosity were reduced in the presence of microparticles, but similar hydrophilic and degradation in phosphate buffer solution behaviors were observed by all hydrogels. Rupture force and maximum strain at rupture were higher in the modified hydrogels, whereas modulus of elasticity was similar across all materials. Viability of primary human dental pulp cells up to 21 days was generally not influenced by the addition of PLGA@CBD microparticles. The control hydrogel showed no antimicrobial activity against <i>Staphylococcus aureus</i>, whereas hydrogels with 5% and 10% PLGA@CBD microparticles showed inhibition zones. In conclusion, the PLGA@CBD microparticles were fabricated and successfully embedded in a hydrogel matrix. Despite the hydrophobic nature of CBD, the physicochemical and morphological properties were generally similar for the hydrogels with and without the CBD-loaded microparticles. The data reported in this study suggested that this original biomaterial loaded with CBD oil has characteristics that could enable it to be used as a scaffold for tissue/cellular regeneration.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive potential of Bio-C Temp demonstrated by systemic mineralization markers and immunoexpression of bone proteins in the rat connective tissue 大鼠结缔组织中的全身矿化标志物和骨蛋白质的免疫表达证明了 Bio-C Temp 的生物活性潜力。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-02-14 DOI: 10.1007/s10856-024-06781-3
Camila Soares Lopes, Mateus Machado Delfino, Mário Tanomaru-Filho, Estela Sasso-Cerri, Juliane Maria Guerreiro-Tanomaru, Paulo Sérgio Cerri
{"title":"Bioactive potential of Bio-C Temp demonstrated by systemic mineralization markers and immunoexpression of bone proteins in the rat connective tissue","authors":"Camila Soares Lopes,&nbsp;Mateus Machado Delfino,&nbsp;Mário Tanomaru-Filho,&nbsp;Estela Sasso-Cerri,&nbsp;Juliane Maria Guerreiro-Tanomaru,&nbsp;Paulo Sérgio Cerri","doi":"10.1007/s10856-024-06781-3","DOIUrl":"10.1007/s10856-024-06781-3","url":null,"abstract":"<div><p>Intracanal medications are used in endodontic treatment due to their antibacterial activity and ability to induce the periapical repair. Among the intracanal medications, the Calen (CAL; SS. White, Brazil) is a calcium hydroxide-based medication that provides an alkaline pH and releases calcium, exerting an antimicrobial activity. Bio-C Temp (BIO; Angelus, Brazil), a ready-to-use bioceramic intracanal medication, was designed to stimulate the mineralized tissues formation. Here, we investigated the bioactive potential of BIO in comparison to the CAL in the rat subcutaneous. Polyethylene tubes filled with medications, and empty tubes (control group, CG) were implanted in the subcutaneous tissue of rats. After 7, 15, 30 and 60 days, the blood was collected for calcium (Ca<sup>+2</sup>) and alkaline phosphatase (ALP) measurement, and the capsules around the implants were processed for morphological analyses. The data were submitted to two-way ANOVA and Tukey test (p &lt; 0.05). At 7, 15 and 30 days, the ALP level was grater in BIO and CAL than in CG (p &lt; 0.0001). At 7 and 15 days, greater Ca<sup>+2</sup> level was seen in the serum of CAL samples. From 7 to 60 days, an increase in the number of fibroblasts, osteocalcin- and osteopontin-immunolabelled cells was observed in BIO and CAL groups (p &lt; 0.0001). In all periods, BIO and CAL specimens showed von Kossa-positive structures. Moreover, ultrastructural analysis revealed globules of mineralization in the capsules around the BIO and CAL specimens. Thus Bio-C Temp caused an increase in the ALP, osteocalcin and osteopontin, which may have allowed the formation of calcite, suggesting bioactive potential.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of collagenous scaffolds for wound healing: characterization and in vivo analysis. 开发用于伤口愈合的胶原支架:特征描述和体内分析。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-02-05 DOI: 10.1007/s10856-023-06774-8
Jéssica Peixoto Rodrigues, Jéssica Regina da Costa Silva, Bruno Antônio Ferreira, Lucas Ian Veloso, Ludmila Sousa Quirino, Roberta Rezende Rosa, Matheus Carvalho Barbosa, Cláudia Mendonça Rodrigues, Paula Batista Fernandes Gaspari, Marcelo Emílio Beletti, Luiz Ricardo Goulart, Natássia Caroline Resende Corrêa
{"title":"Development of collagenous scaffolds for wound healing: characterization and in vivo analysis.","authors":"Jéssica Peixoto Rodrigues, Jéssica Regina da Costa Silva, Bruno Antônio Ferreira, Lucas Ian Veloso, Ludmila Sousa Quirino, Roberta Rezende Rosa, Matheus Carvalho Barbosa, Cláudia Mendonça Rodrigues, Paula Batista Fernandes Gaspari, Marcelo Emílio Beletti, Luiz Ricardo Goulart, Natássia Caroline Resende Corrêa","doi":"10.1007/s10856-023-06774-8","DOIUrl":"10.1007/s10856-023-06774-8","url":null,"abstract":"<p><p>The development of wound dressings from biomaterials has been the subject of research due to their unique structural and functional characteristics. Proteins from animal origin, such as collagen and chitosan, act as promising materials for applications in injuries and chronic wounds, functioning as a repairing agent. This study aims to evaluate in vitro effects of scaffolds with different formulations containing bioactive compounds such as collagen, chitosan, N-acetylcysteine (NAC) and ε-poly-lysine (ε-PL). We manufactured a scaffold made of a collagen hydrogel bioconjugated with chitosan by crosslinking and addition of NAC and ε-PL. Cell viability was verified by resazurin and live/dead assays and the ultrastructure of biomaterials was evaluated by SEM. Antimicrobial sensitivity was assessed by antibiogram. The healing potential of the biomaterial was evaluated in vivo, in a model of healing of excisional wounds in mice. On the 7th day after the injury, the wounds and surrounding skin were processed for evaluation of biochemical and histological parameters associated with the inflammatory process. The results showed great cell viability and increase in porosity after crosslinking while antimicrobial action was observed in scaffolds containing NAC and ε-PL. Chitosan scaffolds bioconjugated with NAC/ε-PL showed improvement in tissue healing, with reduced lesion size and reduced inflammation. It is concluded that scaffolds crosslinked with chitosan-NAC-ε-PL have the desirable characteristics for tissue repair at low cost and could be considered promising biomaterials in the practice of regenerative medicine.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"12"},"PeriodicalIF":4.2,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture. 合成一种潜在的 DPP 衍生光敏剂,并评估其光物理性质,用于 D-A-D 结构的光动力疗法。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-02-01 DOI: 10.1007/s10856-024-06776-0
Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz
{"title":"Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture.","authors":"Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz","doi":"10.1007/s10856-024-06776-0","DOIUrl":"10.1007/s10856-024-06776-0","url":null,"abstract":"<p><p>The study of a macromolecule derived from DPP and triphenylamine, (DPP-BisTPA) by computational chemistry, its synthesis by direct arylation, optical characterization (UV-Vis and fluorescence) and electrochemistry (cyclic voltammetry), as well as its evaluation as a generator of reactive oxygen species indirectly, through the degradation of uric acid. The results obtained by DFT using B3LYP/6-31G (d, p) and TD-DFT using CAM-B3LYP/6-31G (d, p) reveal values of energy levels of the first singlet and triplet excited state that indicate a possible intersystem crossover and the possible generation of reactive oxygen species by a type I mechanism. The compound presents an absorption region within the phototherapeutic window. The electrochemical bandgap is 1.64 eV which suggests a behavior as a semiconductor. DPP-BisTPa were processed as hemispherical nanoparticles with a size around 100 nm, and NPOs were evaluated as a photosensitizer with a ROS generation yield of 4% using a photodynamic therapy flashlight as the light source.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"11"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Evaluation of Biodegradable Core-Shell Microfibrous and Nanofibrous Scaffolds for Tissue Engineering Applications. 用于组织工程应用的可生物降解核壳微纤维和纳米纤维支架的开发与评估。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-01-29 DOI: 10.1007/s10856-024-06777-z
Athina Mitropoulou, Dionysios N Markatos, Andreas Dimopoulos, Antonia Marazioti, Constantinos-Marios Mikelis, Dimosthenis Mavrilas
{"title":"Development and Evaluation of Biodegradable Core-Shell Microfibrous and Nanofibrous Scaffolds for Tissue Engineering Applications.","authors":"Athina Mitropoulou, Dionysios N Markatos, Andreas Dimopoulos, Antonia Marazioti, Constantinos-Marios Mikelis, Dimosthenis Mavrilas","doi":"10.1007/s10856-024-06777-z","DOIUrl":"10.1007/s10856-024-06777-z","url":null,"abstract":"<p><p>Tissue engineering scaffolds as three-dimensional substrates may serve as ideal templates for tissue regeneration by simulating the structure of the extracellular matrix (ECM). Many biodegradable synthetic polymers, either hydrophobic, like Poly-ε-caprolactone (PCL), or hydrophilic, like Poly(Vinyl Alcohol) (PVA), are widely used as candidate bioactive materials for fabricating tissue engineering scaffolds. However, a combination of good cytocompatibility of hydrophilic polymers with good biomechanical performance of hydrophobic polymers could be beneficial for the in vivo performance of the scaffolds. In this study, we aimed to fabricate biodegradable fibrous scaffolds by combining the properties of hydrophobic PCL with those of hydrophilic PVA and evaluate their properties in comparison with pristine PCL scaffolds. Therefore, single-layered PCL scaffolds, sequential tri-layered (PVA/PCL/PVA), and core-shell (PVA as shell and PCL as core) composite scaffolds were developed utilizing the electrospinning technique. The material structural and biomechanical properties of the electrospun scaffolds, before and after their hydrolytic degradation over a seven-month period following storage in phosphate-buffered saline (PBS) at 37 °C, were comprehensively compared. In addition, human embryonic kidney cells (HEK-293) were cultured on the scaffolds to investigate potential cell attachment, infiltration, and proliferation. The results demonstrated the long-term efficacy of core-shell biodegradable fibrous scaffolds in comparison to single-layers PCL and tri-layers PVA/PCL/PVA, not only due to its superior morphological characteristics and mechanical properties, but also due to its ability to promote homogeneous cell distribution and proliferation, without any external chemical or physical stimuli.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"10"},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and characterization of 3D-printed composite scaffolds of coral-derived hydroxyapatite nanoparticles/polycaprolactone/gelatin carrying doxorubicin for bone tissue engineering. 用于骨组织工程的珊瑚衍生羟基磷灰石纳米颗粒/聚己内酯/明胶三维打印复合支架的制造和表征。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-01-29 DOI: 10.1007/s10856-024-06779-x
Fatima Kadi, Ghasem Dini, S Ali Poursamar, Fatemeh Ejeian
{"title":"Fabrication and characterization of 3D-printed composite scaffolds of coral-derived hydroxyapatite nanoparticles/polycaprolactone/gelatin carrying doxorubicin for bone tissue engineering.","authors":"Fatima Kadi, Ghasem Dini, S Ali Poursamar, Fatemeh Ejeian","doi":"10.1007/s10856-024-06779-x","DOIUrl":"10.1007/s10856-024-06779-x","url":null,"abstract":"<p><p>In this study, nanocomposite scaffolds of hydroxyapatite (HA)/polycaprolactone (PCL)/gelatin (Gel) with varying amounts of HA (42-52 wt. %), PCL (42-52 wt. %), and Gel (6 wt. %) were 3D printed. Subsequently, a scaffold with optimal mechanical properties was utilized as a carrier for doxorubicin (DOX) in the treatment of bone cancer. For this purpose, HA nanoparticles were first synthesized by the hydrothermal conversion of Acropora coral and characterized by using different techniques. Also, a compression test was performed to investigate the mechanical properties of the fabricated scaffolds. The mineralization of the optimal scaffold was determined by immersing it in simulated body fluid (SBF) solution for 28 days, and the biocompatibility was investigated by seeding MG-63 osteoblast-like cells on it after 1-7 days. The obtained results showed that the average size of the synthesized HA particles was about 80 nm. The compressive modulus and strength of the scaffold with 47 wt. % HA was reported to be 0.29 GPa and 9.9 MPa, respectively, which was in the range of trabecular bones. In addition, the scaffold surface was entirely coated with an apatite layer after 28 days of soaking in SBF. Also, the efficiency and loading percentage of DOX were obtained as 30.8 and 1.6%, respectively. The drug release behavior was stable for 14 days. Cytotoxicity and adhesion evaluations showed that the fabricated scaffold had no negative effects on the viability of MG-63 cells and led to their proliferation during the investigated period. From these results, it can be concluded that the HA/PCL/Gel scaffold prepared in this study, in addition to its drug release capability, has good bioactivity, mechanical properties, and biocompatibility, and can be considered a suitable option for bone tumor treatment.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"7"},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow affects the structural and mechanical properties of the fibrin network in plasma clots. 流动会影响血浆凝块中纤维蛋白网络的结构和机械特性。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-01-29 DOI: 10.1007/s10856-024-06775-1
Hande Eyisoylu, Emma D Hazekamp, Janneke Cruts, Gijsje H Koenderink, Moniek P M de Maat
{"title":"Flow affects the structural and mechanical properties of the fibrin network in plasma clots.","authors":"Hande Eyisoylu, Emma D Hazekamp, Janneke Cruts, Gijsje H Koenderink, Moniek P M de Maat","doi":"10.1007/s10856-024-06775-1","DOIUrl":"10.1007/s10856-024-06775-1","url":null,"abstract":"<p><p>The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"8"},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial properties of marine algae incorporated polylactide acid membranes as an alternative to clinically applied different collagen membranes. 海洋藻类聚乳酸膜的抗菌特性,可替代临床应用的不同胶原蛋白膜。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-01-29 DOI: 10.1007/s10856-024-06778-y
Jan-Tobias Weitkamp, Soumaya El Hajjami, Yahya Acil, Johannes Spille, Selin Sayin, Emine Sükran Okudan, Eyüp Ilker Saygili, Salih Veziroglu, Christian Flörke, Peter Behrendt, Jörg Wiltfang, Oral Cenk Aktas, Aydin Gülses
{"title":"Antibacterial properties of marine algae incorporated polylactide acid membranes as an alternative to clinically applied different collagen membranes.","authors":"Jan-Tobias Weitkamp, Soumaya El Hajjami, Yahya Acil, Johannes Spille, Selin Sayin, Emine Sükran Okudan, Eyüp Ilker Saygili, Salih Veziroglu, Christian Flörke, Peter Behrendt, Jörg Wiltfang, Oral Cenk Aktas, Aydin Gülses","doi":"10.1007/s10856-024-06778-y","DOIUrl":"10.1007/s10856-024-06778-y","url":null,"abstract":"<p><p>The reconstruction of bony defects in the alveolar crest poses challenges in dental practice. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) procedures utilize barriers to promote bone regeneration and prevent epithelial growth. This study focuses on evaluating the antibacterial properties of marine algae-polylactic acid (PLA) composite membranes compared to commercially available collagen membranes. Marine algae (Corallina elongata, Galaxaura oblongata, Cystoseira compressa, Saragassum vulgare, and Stypopodium schimperi) were processed into powders and blended with PLA to fabricate composite membranes. Cytocompatibility assays using human periodontal ligament fibroblasts (n = 3) were performed to evaluate biocompatibility. Antibacterial effects were assessed through colony-forming units (CFU) and scanning electron microscopy (SEM) analysis of bacterial colonization on the membranes. The cytocompatibility assays demonstrated suitable biocompatibility of all marine algae-PLA composite membranes with human periodontal ligament fibroblasts. Antibacterial assessment revealed that Sargassum vulgare-PLA membranes exhibited the highest resistance to bacterial colonization, followed by Galaxaura oblongata-PLA and Cystoseira compressa-PLA membranes. SEM analysis confirmed these findings and revealed smooth surface textures for the marine algae-PLA membranes compared to the fibrous and porous structures of collagen membranes. Marine algae-PLA composite membranes show promising antibacterial properties and cytocompatibility for guided bone and tissue regeneration applications. Sargassum vulgare-PLA membranes demonstrated the highest resistance against bacterial colonization. These findings suggest that marine algae-PLA composite membranes could serve as effective biomaterials for infection control and tissue regeneration. Further in vivo validation and investigation of biodegradation properties are necessary to explore their clinical potential.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"9"},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doxorubicin-loaded PEG-CdTe QDs conjugated with anti-CXCR4 mAbs: a novel delivery system for extramedullary multiple myeloma treatment 多柔比星负载型 PEG-CdTe QDs 与抗 CXCR4 mAbs 共轭:治疗髓外多发性骨髓瘤的新型递送系统
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-01-20 DOI: 10.1007/s10856-023-06772-w
Dangui Chen, Fei Chen, Jia Lu, Lihong Wang, Fusheng Yao, Haitao Xu
{"title":"Doxorubicin-loaded PEG-CdTe QDs conjugated with anti-CXCR4 mAbs: a novel delivery system for extramedullary multiple myeloma treatment","authors":"Dangui Chen, Fei Chen, Jia Lu, Lihong Wang, Fusheng Yao, Haitao Xu","doi":"10.1007/s10856-023-06772-w","DOIUrl":"https://doi.org/10.1007/s10856-023-06772-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Extramedullary multiple myeloma (EMM) is defined as the presence of plasma cells outside the bone marrow of multiple myeloma patients, and its prognosis is poor. High-dose chemotherapy with autologous stem cell transplantation, as a good option on early lines of therapy, has retained the survival benefit of youny EMM patients, but is intolerant for the majority of old patients because of drug cytotoxicity. To essentially address the intolerance above, we designed a CXCR4-PEG-CdTe-DOX (where CXCR4: chemokine receptor 4; PEG-CdTe: polyethylene glycol-modified cadmium telluride; DOX:doxorubicin) nanoplatform. First, CXCR4 is highly expressed in extramedullary plasma cells. Second, PEG-CdTe a drug carrier that controls drug release, can reduce adverse reactions, prolong drug (e.g, DOX) circulation time in the body, and form a targeting carrier after connecting antibodies. In vitro experiments showed CXCR4-PEG-CdTe-DOX facilitated intracellular drug accumulation through active CXCR4 targeting and released DOX into the microenvironment in a pH-controlled manner, enhancing the therapeutic efficacy and apoptosis rate of myeloma cells (U266). Therefore, targeted chemotherapy mediated by CXCR4-PEG-CdTe-DOX is a promising option for EMM treatment.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"39 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal Biomaterial-on-Chip: a versatile platform for evaluating cellular responses on diverse biomaterial substrates. 通用生物材料芯片:评估细胞对不同生物材料基底反应的多功能平台。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-01-11 DOI: 10.1007/s10856-023-06771-x
Abdul Raouf Atif, Morteza Aramesh, Sarah-Sophia Carter, Maria Tenje, Gemma Mestres
{"title":"Universal Biomaterial-on-Chip: a versatile platform for evaluating cellular responses on diverse biomaterial substrates.","authors":"Abdul Raouf Atif, Morteza Aramesh, Sarah-Sophia Carter, Maria Tenje, Gemma Mestres","doi":"10.1007/s10856-023-06771-x","DOIUrl":"10.1007/s10856-023-06771-x","url":null,"abstract":"<p><p>Microfluidics has emerged as a promising approach for assessing cellular behavior in vitro, providing more physiologically relevant cell culture environments with dynamic flow and shear stresses. This study introduces the Universal Biomaterial-on-Chip (UBoC) device, which enables the evaluation of cell response on diverse biomaterial substrates in a 3D-printed microfluidic device. The UBoC platform offers mechanical stimulation of the cells and monitoring of their response on diverse biomaterials, enabling qualitative and quantitative in vitro analysis both on- and off-chip. Cell adhesion and proliferation were assessed to evaluate the biocompatibility of materials with different physical properties, while mechanical stimulation was performed to investigate shear-dependent calcium signaling in pre-osteoblasts. Moreover, the applicability of the UBoC platform in creating more complex in vitro models by culturing multiple cell types was demonstrated, establishing a dynamic multicellular environment to investigate cellular interfaces and their significance in biological processes. Overall, the UBoC presents an adaptable tool for in vitro evaluation of cellular behavior, offering opportunities for studying various biomaterials and cell interactions in microfluidic environments.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"2"},"PeriodicalIF":4.2,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信