Journal of Materials Science: Materials in Medicine最新文献

筛选
英文 中文
Increased antibiofilm and growth inhibitory effect of Imipenem/Cilastatin nanoliposomes against clinical Pseudomonas aeruginosa isolates 亚胺培南/西司他丁纳米脂质体对临床铜绿假单胞菌的抗菌膜增强和生长抑制作用
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-09-21 DOI: 10.1007/s10856-023-06752-0
Faezeh Milani, Khosro Adibkia, Hamed Hamishehkar, Tooba Gholikhani, Farhad Bani, Morteza Milani
{"title":"Increased antibiofilm and growth inhibitory effect of Imipenem/Cilastatin nanoliposomes against clinical Pseudomonas aeruginosa isolates","authors":"Faezeh Milani,&nbsp;Khosro Adibkia,&nbsp;Hamed Hamishehkar,&nbsp;Tooba Gholikhani,&nbsp;Farhad Bani,&nbsp;Morteza Milani","doi":"10.1007/s10856-023-06752-0","DOIUrl":"10.1007/s10856-023-06752-0","url":null,"abstract":"<div><p>Numerous infections are linked to <i>Pseudomonas aeruginosa</i>. It is one of the major medical concerns because of virulence and antibiotic resistance. Antibiotic encapsulation in liposomes is a good strategy for controlling infections caused by this microorganism. Evaluation of anti-<i>Pseudomonas aeruginosa</i> effect of liposomal form of Imipenem/Cilastatin in vitro condition. By using the disk agar diffusion technique, the isolates’ pattern of antibiotic resistance was identified. The antibiotic was placed into the nanoliposome after it had been made using the thin layer and ethanol injection techniques. SEM and DLS were used to determine the size, shape, and zeta potential of the encapsulated drug form and the empty nanoliposome. Additionally, Imipenem/Cilastatin encapsulation in nanoliposomes was studied using FT-IR spectroscopy. In the microbial assay experiments the MIC, MBC and MBEC of liposomal and free drug forms were determined. The nanoparticles were spherical, with a diameter ranging from 30 to 39 nm, and the EE% in the thin layer and ethanol injection procedures were 97 and 98, respectively. Imipenem/Cilastatin nanoliposomes showed peaks at 3009 cm<sup>−1</sup> and 1650 cm<sup>−1</sup>, demonstrating the thermodynamic stability for the chemical structure of the drug enclosed and validating the encapsulation of antibiotic in the nanoliposomes. When compared to free drug forms, nanoliposomes had lower MIC and MBC values in the majority of the isolates and had a greater ability to eradicate the biofilm formation. It was shown that the two nanoliposome preparation techniques were more efficient in 80% of the isolates, which had outcomes that were consistent with those of numerous other investigations. Overall, we demonstrated that the antibacterial activity of nanoliposomes was higher than that of the free drug form based on the evaluation of their MIC and MBC. Pharmaceutical nanoliposome techniques provide an excellent future perspective on how to manage microbial infections that are resistant to antibiotics.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-023-06752-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41080066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-serine combined with carboxymethyl chitosan guides amorphous calcium phosphate to remineralize enamel L-丝氨酸与羧甲基壳聚糖结合引导无定形磷酸钙对牙釉质进行再矿化。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-09-02 DOI: 10.1007/s10856-023-06745-z
Yinghui Wang, Shuting Zhang, Peiwen Liu, Fan Li, Xu Chen, Haorong Wang, Zhangyi Li, Xi Zhang, Xiangyu Zhang, Xu Zhang
{"title":"L-serine combined with carboxymethyl chitosan guides amorphous calcium phosphate to remineralize enamel","authors":"Yinghui Wang,&nbsp;Shuting Zhang,&nbsp;Peiwen Liu,&nbsp;Fan Li,&nbsp;Xu Chen,&nbsp;Haorong Wang,&nbsp;Zhangyi Li,&nbsp;Xi Zhang,&nbsp;Xiangyu Zhang,&nbsp;Xu Zhang","doi":"10.1007/s10856-023-06745-z","DOIUrl":"10.1007/s10856-023-06745-z","url":null,"abstract":"<div><p>The aim of this study is to investigate a robust and stable calcium-phosphorus system to remineralize human early enamel caries lesions with nanocomplexes of carboxymethyl chitosan/L-serine/amorphous calcium phosphate (CMC-Ser-ACP) to develop an effective method for mimicking the amelogenin (AMEL) mineralization pattern through ACP assembly. A CMC-Ser-ACP nanocomplex solution was first synthesized by a chemical precipitation method, and then 1% sodium hypochlorite (NaClO) was added to induce ACP phase formation. The morphologies of the nanocomplexes were characterized by transmission electron microscopy (TEM), and zeta potential analysis and Fourier transform infrared spectroscopy (FTIR) were performed to detect surface charge and functional group changes. The subtle changes of the demineralized enamel models induced by the remineralization effect were observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The CMC-Ser-ACP nanocomplex solution could be preserved without any precipitation for 45 days. After the application of NaClO and through the guidance of Ser, ACP nanoparticles transformed into relatively orderly arranged hydroxyapatite (HAP) crystals, generating an aprismatic enamel-like layer closely integrated with the demineralized enamel, which resulted in enhanced mechanical properties for the treatment of early enamel caries lesions. The CMC-Ser-ACP nanocomplex solution is a remineralization system with great solution stability, and when NaClO is added, it can rapidly regenerate an aprismatic enamel-like layer in situ on the demineralized enamel surface. This novel remineralization system has stable chemical properties and can greatly increase the therapeutic effects against early enamel caries.</p><h3>Graphical Abstract</h3>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 9","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10161450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted delivery of a short antimicrobial peptide (CM11) against Helicobacter pylori gastric infection using concanavalin A-coated chitosan nanoparticles 使用刀豆蛋白a包被的壳聚糖纳米颗粒靶向递送抗幽门螺杆菌胃感染的短抗菌肽(CM11)。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-08-31 DOI: 10.1007/s10856-023-06748-w
Mehrdad Moosazadeh Moghaddam, Shahin Bolouri, Reza Golmohammadi, Mahdi Fasihi-Ramandi, Mohammad Heiat, Reza Mirnejad
{"title":"Targeted delivery of a short antimicrobial peptide (CM11) against Helicobacter pylori gastric infection using concanavalin A-coated chitosan nanoparticles","authors":"Mehrdad Moosazadeh Moghaddam,&nbsp;Shahin Bolouri,&nbsp;Reza Golmohammadi,&nbsp;Mahdi Fasihi-Ramandi,&nbsp;Mohammad Heiat,&nbsp;Reza Mirnejad","doi":"10.1007/s10856-023-06748-w","DOIUrl":"10.1007/s10856-023-06748-w","url":null,"abstract":"<div><p><i>Helicobacter pylori</i> is the cause of most cases of stomach ulcers and also causes some digestive cancers. The emergence and spread of antibiotic-resistant strains of <i>H. pylori</i> is one of the most important challenges in the treatment of its infections. The present study aims to develop a concanavalin A (ConA) coated chitosan (CS) nanocarrier-based drug delivery for the targeted release of peptides to the site of <i>H. pylori</i> infection. Accordingly, chitosan was used as an encapsulating agent for CM11 peptide delivery by applying ionotropic gelation method. Con-A was used for coating CS nanoparticles to target <i>H. pylori</i>. The CS NPs and ConA-CS NPs were characterized by FTIR, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The MIC of CM11-loaded ConA-CS NPs against <i>H. pylori</i> SS1 strain was analyzed in vitro. In order to evaluate the treatment efficiency in vivo, a gastric infection model of <i>H. pylori SS1</i> strain was established in mice and histopathological studies and IL-1β cytokine assay were performed. Based on the results, the size frequency for CS NPs and ConA-CS NPs was about 200 and 350 nm, respectively. The prepared CM11-loaded ConA-CS NPs exhibited antibacterial activity against <i>H. pylori SS1</i> strain with a concentration of 32 µg/ml. The highest healing process was observed in synthesized CM11-loaded ConA-CS NPs treatments and a significant decrease in IL-1β was observed. Our findings highlight the potential of chitosan nanoparticles as a drug delivery vehicle in the treatment of gastric infection model of <i>H. pylori</i> SS1 strain.</p><h3>Graphical Abstract</h3>\u0000 <div><figure><div><div><picture><img></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 9","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10144411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced therapeutic effects of mesenchymal stem cell-derived extracellular vesicles within chitosan hydrogel in the treatment of diabetic foot ulcers 壳聚糖水凝胶增强间充质干细胞来源的细胞外囊泡治疗糖尿病足溃疡的疗效
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-08-28 DOI: 10.1007/s10856-023-06746-y
Shuangshuang Yang, Siyu Chen, Chengpeng Zhang, Jing Han, Chunyuan Lin, Xiaohui Zhao, Huizhen Guo, Yi Tan
{"title":"Enhanced therapeutic effects of mesenchymal stem cell-derived extracellular vesicles within chitosan hydrogel in the treatment of diabetic foot ulcers","authors":"Shuangshuang Yang,&nbsp;Siyu Chen,&nbsp;Chengpeng Zhang,&nbsp;Jing Han,&nbsp;Chunyuan Lin,&nbsp;Xiaohui Zhao,&nbsp;Huizhen Guo,&nbsp;Yi Tan","doi":"10.1007/s10856-023-06746-y","DOIUrl":"10.1007/s10856-023-06746-y","url":null,"abstract":"<div><p>Extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) have emerged as promising candidates for cell-free therapy in various diseases, including chronic cutaneous wounds. However, the lack of standardized protocols for EVs’ preparation and identification poses a significant challenge to their clinical application. Thus, the objective was to develop a safe and efficient method for the large-scale production of hUCMSC-derived EVs while establishing a comprehensive identification protocol encompassing morphology, particle size distribution, protein expression, and purity. This study observed that most of the EVs acquired through the protocol exhibited either a cup-shaped or round-shaped structure, with a median diameter of ~73.25?nm. The proportions of EVs positive for CD9, CD63, and CD81 were 37.5%, 38.6%, and 19.8%, respectively. To enhance their therapeutic potential in wound treatment, EVs were incorporated into chitosan hydrogel, forming chitosan hydrogel-EVs (CS-EVs). Furthermore, it was demonstrated that CS-EVs exhibited continuous release of EVs into the surrounding environment and, importantly, that the released EVs were internalized by human umbilical vein endothelial cells (HUVECs), resulting in significant enhancement of cell migration and angiogenesis. Additionally, in a rat model of diabetic foot ulcers, CS-EVs demonstrated a robust therapeutic effect in promoting wound healing. Following a 15-day treatment period, the group treated with CS-EVs demonstrated an impressive 93.3% wound closure ability, accompanied by a high degree of re-epithelialization. In contrast, the control group exhibited only a 71.5% reduction in wound size. In summary, this study offers solutions for the purification, characterization, and application of EVs in clinical wound treatment. These results not only offer fresh perspectives on the involvement of hUCMSC-derived EVs in wound healing but also introduce a non-invasive approach for applying EVs that holds practical significance in skin repair.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-023-06746-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5072659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cobalt-containing borate bioactive glass fibers for treatment of diabetic wound 治疗糖尿病伤口的含钴硼酸盐生物活性玻璃纤维
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-08-02 DOI: 10.1007/s10856-023-06741-3
Minhui Zhang, Aihua Yao, Fanrong Ai, Jian Lin, Qingge Fu, Deping Wang
{"title":"Cobalt-containing borate bioactive glass fibers for treatment of diabetic wound","authors":"Minhui Zhang,&nbsp;Aihua Yao,&nbsp;Fanrong Ai,&nbsp;Jian Lin,&nbsp;Qingge Fu,&nbsp;Deping Wang","doi":"10.1007/s10856-023-06741-3","DOIUrl":"10.1007/s10856-023-06741-3","url":null,"abstract":"<div><p>Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Cobalt is well known for its capacity to induce angiogenesis by stabilizing hypoxia-inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). In this study, Co-containing borate bioactive glasses and their derived fibers were fabricated by partially replacing CaO in 1393B3 borate glass with CoO. Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) analyses were performed to characterize the effect of Co incorporation on the glass structure, and the results showed that the substitution promoted the transformation of [BO<sub>3</sub>] into [BO<sub>4</sub>] units, which endow the glass with higher chemical durability and lower reaction rate with the simulated body fluid (SBF), thereby achieving sustained and controlled Co<sup>2+</sup> ion release. In vitro biological assays were performed to assess the angiogenic potential of the Co-containing borate glass fibers. It was found that the released Co<sup>2+</sup> ion significantly enhanced the proliferation, migration and tube formation of the Human Umbilical Vein Endothelial Cells (HUVECs) by upregulating the expression of angiogenesis-related proteins such as HIF-1α and VEGF. Finally. In vivo results demonstrated that the Co-containing fibers accelerated full-thickness skin wound healing in streptozotocin (STZ)-induced diabetic rat model by promoting angiogenesis and re-epithelialization.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-023-06741-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4071937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted drug-loaded PLGA-PCL microspheres for specific and localized treatment of triple negative breast cancer 靶向载药PLGA-PCL微球用于特异性和局部治疗三阴性乳腺癌
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-08-02 DOI: 10.1007/s10856-023-06738-y
Chukwudalu C. Nwazojie, John D. Obayemi, Ali A. Salifu, Sandra M. Borbor-Sawyer, Vanessa O. Uzonwanne, Chinyerem E. Onyekanne, Udom M. Akpan, Killian C. Onwudiwe, Josephine C. Oparah, Olushola S. Odusanya, Winston O. Soboyejo
{"title":"Targeted drug-loaded PLGA-PCL microspheres for specific and localized treatment of triple negative breast cancer","authors":"Chukwudalu C. Nwazojie,&nbsp;John D. Obayemi,&nbsp;Ali A. Salifu,&nbsp;Sandra M. Borbor-Sawyer,&nbsp;Vanessa O. Uzonwanne,&nbsp;Chinyerem E. Onyekanne,&nbsp;Udom M. Akpan,&nbsp;Killian C. Onwudiwe,&nbsp;Josephine C. Oparah,&nbsp;Olushola S. Odusanya,&nbsp;Winston O. Soboyejo","doi":"10.1007/s10856-023-06738-y","DOIUrl":"10.1007/s10856-023-06738-y","url":null,"abstract":"<div><p>The paper presents the results of the experimental and analytical study of targeted drug-loaded polymer-based microspheres made from blend polymer of polylactic-co-glycolic acid and polycaprolactone (PLGA-PCL) for targeted and localized cancer drug delivery. In vitro sustained release with detailed thermodynamically driven drug release kinetics, over a period of three months using encapsulated targeted drugs (prodigiosin-EphA2 or paclitaxel-EphA2) and control drugs [Prodigiosin (PGS), and paclitaxel (PTX)] were studied. Results from in vitro study showed a sustained and localized drug release that is well-characterized by non-Fickian Korsmeyer–Peppas kinetics model over the range of temperatures of 37 °C (body temperature), 41 °C, and 44 °C (hyperthermic temperatures). The in vitro alamar blue, and flow cytometry assays in the presence of the different drug-loaded polymer formulations resulted to cell death and cytotoxicity that was evidence through cell inhibition and late apoptosis on triple negative breast cancer (TNBC) cells (MDA-MB 231). In vivo studies carried out on groups of 4-week-old athymic nude mice that were induced with subcutaneous TNBC, showed that the localized release of the EphA2-conjugated drugs was effective in complete elimination of residual tumor after local surgical resection. Finally, ex vivo histopathological analysis carried out on the euthanized mice revealed no cytotoxicity and absence of breast cancer metastases in the liver, kidney, and lungs 12 weeks after treatment. The implications of the results are then discussed for the development of encapsulated EphA2-conjugated drugs formulation in the specific targeting, localized, and sustain drug release for the elimination of local recurred TNBC tumors after surgical resection.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-023-06738-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4420095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocompatibility analysis and chemical characterization of Mn-doped hydroxyapatite 掺锰羟基磷灰石的生物相容性分析及化学性质
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-07-29 DOI: 10.1007/s10856-023-06744-0
L. S. Villaseñor-Cerón, D. Mendoza-Anaya, S. López-Ortiz, R. Rosales-Ibañez, J. J. Rodríguez-Martínez, M. I. Reyes-Valderrama, V. Rodríguez-Lugo
{"title":"Biocompatibility analysis and chemical characterization of Mn-doped hydroxyapatite","authors":"L. S. Villaseñor-Cerón,&nbsp;D. Mendoza-Anaya,&nbsp;S. López-Ortiz,&nbsp;R. Rosales-Ibañez,&nbsp;J. J. Rodríguez-Martínez,&nbsp;M. I. Reyes-Valderrama,&nbsp;V. Rodríguez-Lugo","doi":"10.1007/s10856-023-06744-0","DOIUrl":"10.1007/s10856-023-06744-0","url":null,"abstract":"<div><p>The present work studies the effect of Mn doping on the crystalline structure of the Hap synthesized by the hydrothermal method at 200 °C for 24 h, from Ca(OH)<sub>2</sub> and (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>, incorporating MnCl<sub>2</sub> to 0.1, 0.5, 1.0, 1.5 and 2.0 %wt of Mn concentrations. Samples were characterized by the X-Ray Diffraction technique, which revealed the diffraction peaks that corresponded to the hexagonal and monoclinic phase of the Hap; it was observed that the average size of crystallite decreased from 23.67 to 22.69 nm as the concentration of Mn increased. TEM shows that in all samples, there are two distributions of particle sizes; one corresponds to nanorods with several tens of nanometers in length, and the other in which the diameter and length are very close. FTIR analysis revealed absorption bands corresponding to the PO<sub>4</sub><sup>−3</sup> and OH<sup>−</sup> groups characteristic of the Hap. It was possible to establish a substitution mechanism between the Mn and the ions of Ca<sup>+2</sup> of the Hap. From the Alamar blue test, a cell viability of 86.88% ± 5 corresponding to the sample of Hap at 1.5 %wt Mn was obtained, considered non-cytotoxic according to ISO 10993-5. It also evaluated and demonstrated the good osteoinductive properties of the materials, which were verified by histology and immunofluorescence expression of osteogenic markers. Adhesion, viability, biocompatibility and osteoinductive properties, make these materials candidates for future applications in bone tissue engineering with likely uses in regenerative medicine.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-023-06744-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5118806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Composite material consisting of microporous beta-TCP ceramic and alginate-dialdehyde-gelatin for controlled dual release of clindamycin and bone morphogenetic protein 2 由微孔β - tcp陶瓷和海藻酸-二醛-明胶组成的复合材料,用于克林霉素和骨形态发生蛋白2的控制双释放
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-07-27 DOI: 10.1007/s10856-023-06743-1
Lucas Ritschl, Pia Schilling, Annette Wittmer, Marc Bohner, Anke Bernstein, Hagen Schmal, Michael Seidenstuecker
{"title":"Composite material consisting of microporous beta-TCP ceramic and alginate-dialdehyde-gelatin for controlled dual release of clindamycin and bone morphogenetic protein 2","authors":"Lucas Ritschl,&nbsp;Pia Schilling,&nbsp;Annette Wittmer,&nbsp;Marc Bohner,&nbsp;Anke Bernstein,&nbsp;Hagen Schmal,&nbsp;Michael Seidenstuecker","doi":"10.1007/s10856-023-06743-1","DOIUrl":"10.1007/s10856-023-06743-1","url":null,"abstract":"<div><p>The aim of this study was to produce a composite of microporous β-TCP filled with alginate-gelatin crosslinked hydrogel, clindamycin and bone morphogenetic protein (BMP-2) to prolong the drug-release behaviour for up to 28 days. The most promising alginate-di-aldehyde(ADA)-gelatin gel for drug release from microcapsules was used to fill microporous β-TCP ceramics under directional flow in a special loading chamber. Dual release of clindamycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21 and 28 by high performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). After release, the microbial efficacy of the clindamycin was checked and the biocompatibility of the composite was tested in cell culture. Clindamycin and the model substance FITC-protein A were released from microcapsules over 28 days. The clindamycin burst release was 43 ± 1%. For the loaded ceramics, a clindamycin release above the minimal inhibitory concentration (MIC) until day 9 and a burst release of 90.56 ± 2.96% were detected. BMP-2 was released from the loaded ceramics in low concentrations over 28 days. The release of active substances from β-TCP and hydrogel have already been extensively studied. Directional flow loading is a special procedure in which the ceramic could act as a stabilizer in the bone and, as a biodegradable system, enables a single-stage surgical procedure. Whether ADA-gelatin gel is suitable for this procedure as a more biodegradable alternative to pure alginate or whether a dual release is possible in this composite has not yet been investigated.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-023-06743-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5477501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta-TCP scaffolds with rationally designed macro-micro hierarchical structure improved angio/osteo-genesis capability for bone regeneration 具有合理设计的宏观-微观分层结构的 Beta-TCP 支架提高了骨再生的血管/骨生成能力
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-07-24 DOI: 10.1007/s10856-023-06733-3
Jianlang Feng, Junjie Liu, Yingqu Wang, Jingjing Diao, Yudi Kuang, Naru Zhao
{"title":"Beta-TCP scaffolds with rationally designed macro-micro hierarchical structure improved angio/osteo-genesis capability for bone regeneration","authors":"Jianlang Feng,&nbsp;Junjie Liu,&nbsp;Yingqu Wang,&nbsp;Jingjing Diao,&nbsp;Yudi Kuang,&nbsp;Naru Zhao","doi":"10.1007/s10856-023-06733-3","DOIUrl":"10.1007/s10856-023-06733-3","url":null,"abstract":"<div><p>The design of hierarchical porous structure in scaffolds is crucial for bone defect regenerative repair. However, bioceramic materials present a challenge in precisely constructing designed micropores owing to the limitation of forming process. To investigate micropore shape influences bone regeneration in bioceramic scaffolds with macropores, hierarchical porous scaffolds with interconnective macropores (~400 μm) and two types of micropores (spherical and fibrous) were prepared using a combination of direct ink writing (DIW) and template sacrifice methods. Compared to the scaffold with spherical micropores, the scaffold with highly interconnected fibrous micropores significantly improved cell adhesion and upregulated osteogenic and angiogenetic-related gene expression in mBMSCs and HUVECs, respectively. Furthermore, in vivo implantation experiments showed that hierarchical scaffolds with fibrous micropores accelerated the bone repair process significantly. This result can be attributed to the high interconnectivity of fibrous micropores, which promotes the transportation of nutrients and waste during bone regeneration. Our work demonstrates that hierarchical porous scaffold design, especially one with a fibrous micropore structure, is a promising strategy for improving the bone regeneration performance of bioceramic scaffolds.</p><h3>Graphical Abstract</h3>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 7","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9893441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host–device interactions: exposure of lung epithelial cells and fibroblasts to nickel, titanium, or nitinol affect proliferation, reactive oxygen species production, and cellular signaling 宿主与设备之间的相互作用:肺上皮细胞和成纤维细胞接触镍、钛或镍钛诺后会影响增殖、活性氧生成和细胞信号传导
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2023-07-24 DOI: 10.1007/s10856-023-06742-2
Simon D. Pouwels, Alina Sigaeva, Shanna de Boer, Ilse A. Eichhorn, Lisanne Koll, Jeroen Kuipers, Romana Schirhagl, Irene H. Heijink, Janette K. Burgess, Dirk-Jan Slebos
{"title":"Host–device interactions: exposure of lung epithelial cells and fibroblasts to nickel, titanium, or nitinol affect proliferation, reactive oxygen species production, and cellular signaling","authors":"Simon D. Pouwels,&nbsp;Alina Sigaeva,&nbsp;Shanna de Boer,&nbsp;Ilse A. Eichhorn,&nbsp;Lisanne Koll,&nbsp;Jeroen Kuipers,&nbsp;Romana Schirhagl,&nbsp;Irene H. Heijink,&nbsp;Janette K. Burgess,&nbsp;Dirk-Jan Slebos","doi":"10.1007/s10856-023-06742-2","DOIUrl":"10.1007/s10856-023-06742-2","url":null,"abstract":"<div><p>Endoscopic implantation of medical devices for the treatment of lung diseases, including airway stents, unidirectional valves and coils, is readily used to treat central airway disease and emphysema. However, granulation and fibrotic tissue formation impairs treatment effectiveness. To date little is known about the interaction between implanted devices, often made from metals, such as nickel, titanium or nitinol, and cells in the airways. Here, we study the response of lung epithelial cells and fibroblasts to implant device materials. The adhesion and proliferation of bronchial epithelial cells and lung fibroblasts upon exposure to 10 × 3 × 1 mm pieces of nickel, titanium or nitinol is examined using light and scanning electron microscopy. Pro-inflammatory cytokine mRNA expression and release, signaling kinase activity and intracellular free radical production are assessed. Nitinol, and to a lesser extent nickel and titanium, surfaces support the attachment and growth of lung epithelial cells. Nitinol induces a rapid and significant alteration of kinase activity. Cells directly exposed to nickel or titanium produce free radicals, but those exposed to nitinol do not. The response of lung epithelial cells and fibroblasts depends on the metal type to which they are exposed. Nitinol induces cellular surface growth and the induction of kinase activity, while exposure of lung epithelial cells to nickel and titanium induces free radical production, but nitinol does not.</p><h3>Graphical Abstract</h3>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 7","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9893442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信