生物相容性 S59 玻璃支架的体外和体内溶解。

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Laura Aalto-Setälä, Peter Uppstu, Robert Björkenheim, Gustav Strömberg, Nina C. Lindfors, Jukka Pajarinen, Leena Hupa
{"title":"生物相容性 S59 玻璃支架的体外和体内溶解。","authors":"Laura Aalto-Setälä,&nbsp;Peter Uppstu,&nbsp;Robert Björkenheim,&nbsp;Gustav Strömberg,&nbsp;Nina C. Lindfors,&nbsp;Jukka Pajarinen,&nbsp;Leena Hupa","doi":"10.1007/s10856-024-06795-x","DOIUrl":null,"url":null,"abstract":"<div><p>Fabrication of porous tissue-engineering scaffolds from bioactive glasses (BAG) is complicated by the tendency of BAG compositions to crystallize in thermal treatments during scaffold manufacture. Here, experimental biocompatible glass S59 (SiO<sub>2</sub> 59.7 wt%, Na<sub>2</sub>O 25.5 wt%, CaO 11.0 wt%, P<sub>2</sub>O<sub>5</sub> 2.5 wt%, B<sub>2</sub>O<sub>3</sub> 1.3 wt%), known to be resistant to crystallization, was used in sintering of glass granules (300–500 µm) into porous scaffolds. The dissolution behavior of the scaffolds was then studied in vivo in rabbit femurs and under continuous flow conditions in vitro (14 days in vitro/56 days in vivo). The scaffolds were osteoconductive in vivo, as bone could grow into the scaffold structure. Still, the scaffolds could not induce sufficiently rapid bone ingrowth to replace the strength lost due to dissolution. The scaffolds lost their structure and strength as the scaffold necks dissolved. In vitro, S59 dissolved congruently throughout the 14-day experiments, resulting in only a slight reaction layer formation. Manufacturing BAG scaffolds from S59 that retain their amorphous structure was thus possible. The relatively rapid and stable dissolution of the scaffold implies that the glass S59 may have the potential to be used in composite implants providing initial strength and stable, predictable release of ions over longer exposure times.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222206/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo dissolution of biocompatible S59 glass scaffolds\",\"authors\":\"Laura Aalto-Setälä,&nbsp;Peter Uppstu,&nbsp;Robert Björkenheim,&nbsp;Gustav Strömberg,&nbsp;Nina C. Lindfors,&nbsp;Jukka Pajarinen,&nbsp;Leena Hupa\",\"doi\":\"10.1007/s10856-024-06795-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fabrication of porous tissue-engineering scaffolds from bioactive glasses (BAG) is complicated by the tendency of BAG compositions to crystallize in thermal treatments during scaffold manufacture. Here, experimental biocompatible glass S59 (SiO<sub>2</sub> 59.7 wt%, Na<sub>2</sub>O 25.5 wt%, CaO 11.0 wt%, P<sub>2</sub>O<sub>5</sub> 2.5 wt%, B<sub>2</sub>O<sub>3</sub> 1.3 wt%), known to be resistant to crystallization, was used in sintering of glass granules (300–500 µm) into porous scaffolds. The dissolution behavior of the scaffolds was then studied in vivo in rabbit femurs and under continuous flow conditions in vitro (14 days in vitro/56 days in vivo). The scaffolds were osteoconductive in vivo, as bone could grow into the scaffold structure. Still, the scaffolds could not induce sufficiently rapid bone ingrowth to replace the strength lost due to dissolution. The scaffolds lost their structure and strength as the scaffold necks dissolved. In vitro, S59 dissolved congruently throughout the 14-day experiments, resulting in only a slight reaction layer formation. Manufacturing BAG scaffolds from S59 that retain their amorphous structure was thus possible. The relatively rapid and stable dissolution of the scaffold implies that the glass S59 may have the potential to be used in composite implants providing initial strength and stable, predictable release of ions over longer exposure times.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-024-06795-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06795-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

用生物活性玻璃(BAG)制造多孔组织工程支架非常复杂,因为在支架制造过程中,BAG 成分在热处理中容易结晶。在这里,实验性生物相容性玻璃 S59(SiO2 59.7 wt%、Na2O 25.5 wt%、CaO 11.0 wt%、P2O5 2.5 wt%、B2O3 1.3 wt%)被用于将玻璃颗粒(300-500 µm)烧结成多孔支架,已知该玻璃具有抗结晶性。然后在兔子股骨的体内和体外连续流动条件下(体外 14 天/体内 56 天)研究了支架的溶解行为。这些支架在体内具有骨传导性,因为骨骼可以长入支架结构中。不过,这些支架无法诱导足够快的骨生长,以替代因溶解而损失的强度。随着支架颈部的溶解,支架失去了结构和强度。在体外,S59 在整个 14 天的实验过程中溶解一致,只形成了轻微的反应层。因此,用 S59 制造保持无定形结构的 BAG 支架是可能的。支架相对快速而稳定的溶解意味着玻璃 S59 有可能被用于复合植入物,在较长的暴露时间内提供初始强度和稳定、可预测的离子释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In vitro and in vivo dissolution of biocompatible S59 glass scaffolds

In vitro and in vivo dissolution of biocompatible S59 glass scaffolds

Fabrication of porous tissue-engineering scaffolds from bioactive glasses (BAG) is complicated by the tendency of BAG compositions to crystallize in thermal treatments during scaffold manufacture. Here, experimental biocompatible glass S59 (SiO2 59.7 wt%, Na2O 25.5 wt%, CaO 11.0 wt%, P2O5 2.5 wt%, B2O3 1.3 wt%), known to be resistant to crystallization, was used in sintering of glass granules (300–500 µm) into porous scaffolds. The dissolution behavior of the scaffolds was then studied in vivo in rabbit femurs and under continuous flow conditions in vitro (14 days in vitro/56 days in vivo). The scaffolds were osteoconductive in vivo, as bone could grow into the scaffold structure. Still, the scaffolds could not induce sufficiently rapid bone ingrowth to replace the strength lost due to dissolution. The scaffolds lost their structure and strength as the scaffold necks dissolved. In vitro, S59 dissolved congruently throughout the 14-day experiments, resulting in only a slight reaction layer formation. Manufacturing BAG scaffolds from S59 that retain their amorphous structure was thus possible. The relatively rapid and stable dissolution of the scaffold implies that the glass S59 may have the potential to be used in composite implants providing initial strength and stable, predictable release of ions over longer exposure times.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信