Synthesis, characterization, and application potential of chitosan/acrylamide composite hydrogels as skin expanders

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Chenxi Zhang, Chenjie Tan, Hangchong Shen, Qianqian Xu, Jiadong Pan, Xin Wang
{"title":"Synthesis, characterization, and application potential of chitosan/acrylamide composite hydrogels as skin expanders","authors":"Chenxi Zhang,&nbsp;Chenjie Tan,&nbsp;Hangchong Shen,&nbsp;Qianqian Xu,&nbsp;Jiadong Pan,&nbsp;Xin Wang","doi":"10.1007/s10856-024-06812-z","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogels are currently widely used in regenerative medicine and wound repair due to their superior biocompatibility, reliable mechanical strength, and good morphological memory. We aimed to prepare a self-expanding hydrogel that can be used as a skin expander for the repair of large soft skin tissue defects. Self-expanding hydrogels were prepared by chemical cross-linking, which consisted of water-soluble chitosan (CS), acrylamide (AM), methylene bisacrylamide (NMBA), etc. Five groups of in vitro experiments, including (CS-AM) of 0% (pure AM group), 13.9%, 27.8%, 41.7%, and 55.6%, were conducted to determine mechanical properties, swelling properties, cytotoxicity, etc. In the rat model, both a tight skin area (neck) and a loose skin area (back) were selected for expansion with hydrogels. A total of 27.8% of the CS-AM samples expanded stably under the skin of the rats, achieving 370% expansion in the tight zone and 490% expansion in the flaccid zone. Subcutaneous histopathological examination suggested that the inflammation index of the pericolloid tissue was lower in the CS-AM group than in the pure AM group. Our results demonstrate that self-expanding CS-AM hydrogels have great potential for application as skin expanders.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06812-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06812-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels are currently widely used in regenerative medicine and wound repair due to their superior biocompatibility, reliable mechanical strength, and good morphological memory. We aimed to prepare a self-expanding hydrogel that can be used as a skin expander for the repair of large soft skin tissue defects. Self-expanding hydrogels were prepared by chemical cross-linking, which consisted of water-soluble chitosan (CS), acrylamide (AM), methylene bisacrylamide (NMBA), etc. Five groups of in vitro experiments, including (CS-AM) of 0% (pure AM group), 13.9%, 27.8%, 41.7%, and 55.6%, were conducted to determine mechanical properties, swelling properties, cytotoxicity, etc. In the rat model, both a tight skin area (neck) and a loose skin area (back) were selected for expansion with hydrogels. A total of 27.8% of the CS-AM samples expanded stably under the skin of the rats, achieving 370% expansion in the tight zone and 490% expansion in the flaccid zone. Subcutaneous histopathological examination suggested that the inflammation index of the pericolloid tissue was lower in the CS-AM group than in the pure AM group. Our results demonstrate that self-expanding CS-AM hydrogels have great potential for application as skin expanders.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信