Mustafa Tunalı, Esra Ercan, Suat Pat, Emrah Sarıca, Aysel Güven Bağla, Nilüfer Aytürk, Duygu Sıddıkoğlu, Vildan Bilgin
{"title":"Nano-titanium coating on glass surface to improve platelet-rich fibrin (PRF) quality","authors":"Mustafa Tunalı, Esra Ercan, Suat Pat, Emrah Sarıca, Aysel Güven Bağla, Nilüfer Aytürk, Duygu Sıddıkoğlu, Vildan Bilgin","doi":"10.1007/s10856-024-06838-3","DOIUrl":null,"url":null,"abstract":"<div><p>The quality of platelet-rich fibrin (PRF) is contingent on the surface characteristics interfacing with blood. Titanium’s superior platelet activation, surpassing silica, has made Titanium-platelet-rich fibrin (T-PRF) a favored autogenous bone graft material due to its extended degradation time. Pioneering a novel approach, this study aims to achieve an enhanced fibrin structure using glass tubes coated with nano-titanium, marking the surface’s debut in our PRF production endeavors. Employing a rapid thermionic vacuum arc (TVA) process under high vacuum, we conducted comprehensive analyses of the tubes. Comprehensive analyses, including X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), were conducted on the nano-titanium-coated glass tubes. Three PRF types were formulated: silica-activated leukocyte- and platelet-rich fibrin (L-PRF, control group), machined-surface titanium tubes (T-PRF), and nano-titanium-coated tubes (nanoT-PRF). Analyses unveiled denser fibrin areas in nanoT-PRF than T-PRF, with the least dense areas in L-PRF. Cell distribution paralled between nanoT-PRF and T-PRF groups, while L-PRF cells were embedded in the fibrin border. NanoT-PRF exhibited the densest autogenous fibrin structure, suggesting prolonged in vivo resorption. Additionally, we explore the potential practicality of single-use production for nanoT-PRF tubes, introducing a promising clinical advancement. This study marks a significant stride in innovative biomaterial design, contributing to the progress of regenerative medicine.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06838-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06838-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The quality of platelet-rich fibrin (PRF) is contingent on the surface characteristics interfacing with blood. Titanium’s superior platelet activation, surpassing silica, has made Titanium-platelet-rich fibrin (T-PRF) a favored autogenous bone graft material due to its extended degradation time. Pioneering a novel approach, this study aims to achieve an enhanced fibrin structure using glass tubes coated with nano-titanium, marking the surface’s debut in our PRF production endeavors. Employing a rapid thermionic vacuum arc (TVA) process under high vacuum, we conducted comprehensive analyses of the tubes. Comprehensive analyses, including X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), were conducted on the nano-titanium-coated glass tubes. Three PRF types were formulated: silica-activated leukocyte- and platelet-rich fibrin (L-PRF, control group), machined-surface titanium tubes (T-PRF), and nano-titanium-coated tubes (nanoT-PRF). Analyses unveiled denser fibrin areas in nanoT-PRF than T-PRF, with the least dense areas in L-PRF. Cell distribution paralled between nanoT-PRF and T-PRF groups, while L-PRF cells were embedded in the fibrin border. NanoT-PRF exhibited the densest autogenous fibrin structure, suggesting prolonged in vivo resorption. Additionally, we explore the potential practicality of single-use production for nanoT-PRF tubes, introducing a promising clinical advancement. This study marks a significant stride in innovative biomaterial design, contributing to the progress of regenerative medicine.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.