Anirudh Venkatraman Krishnan, Nitin Mathusoothanaperumal Sukanya, Tabishur Rahman, Mohamed A. H. Gepreel
{"title":"下颌骨成角骨折内固定植入物的低成本钛-钼-铁(TMF8)替代品的性能评估:有限元分析研究","authors":"Anirudh Venkatraman Krishnan, Nitin Mathusoothanaperumal Sukanya, Tabishur Rahman, Mohamed A. H. Gepreel","doi":"10.1007/s10856-024-06842-7","DOIUrl":null,"url":null,"abstract":"<div><p>Stainless steel and titanium-based alloys have been the gold standard when it comes to permanent implants and magnesium-based alloys have been the best option for bioresorbable alloys. Ti-6Al-4V, Ti-64, with its 110 GPa Young’s Modulus is the most commonly employed alloy to manufacture biomedical implants used for treatment of fractures of skeleton. Recently, researchers have developed a new low-cost and toxic Vanadium-free alternative to this alloy, Ti-3Mo-0.5Fe at.%, namely TMF8. This alloy has a 25% lesser Young’s Modulus compared to Ti-6Al-4V and also demonstrated acceptable mechanical properties while possessing better cell proliferation results. The lower Young’s Modulus can aid in lowering stress shielding effects while its cytocompatibility could enhance healing. This work, therefore, tries to use finite element analyses to compare these two alloys (Ti-64 and TMF8) from a practical structural point of view to analyse the advantages and disadvantages of this new alloy and how a low-cost biocompatible alternative (TMF8) can actually prove to be a more viable option. The analyses confirm that TMF8 shows almost similar biomechanics performance to Ti-64 alloy (and in acceptable range) in bone plate fixation of mandibular angular fracture treatment.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06842-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of a low-cost Ti-Mo-Fe (TMF8) as a replacement for Ti-6Al-4V for internal fixation implants used in mandibular angular fractures: a finite element analysis study\",\"authors\":\"Anirudh Venkatraman Krishnan, Nitin Mathusoothanaperumal Sukanya, Tabishur Rahman, Mohamed A. H. Gepreel\",\"doi\":\"10.1007/s10856-024-06842-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stainless steel and titanium-based alloys have been the gold standard when it comes to permanent implants and magnesium-based alloys have been the best option for bioresorbable alloys. Ti-6Al-4V, Ti-64, with its 110 GPa Young’s Modulus is the most commonly employed alloy to manufacture biomedical implants used for treatment of fractures of skeleton. Recently, researchers have developed a new low-cost and toxic Vanadium-free alternative to this alloy, Ti-3Mo-0.5Fe at.%, namely TMF8. This alloy has a 25% lesser Young’s Modulus compared to Ti-6Al-4V and also demonstrated acceptable mechanical properties while possessing better cell proliferation results. The lower Young’s Modulus can aid in lowering stress shielding effects while its cytocompatibility could enhance healing. This work, therefore, tries to use finite element analyses to compare these two alloys (Ti-64 and TMF8) from a practical structural point of view to analyse the advantages and disadvantages of this new alloy and how a low-cost biocompatible alternative (TMF8) can actually prove to be a more viable option. The analyses confirm that TMF8 shows almost similar biomechanics performance to Ti-64 alloy (and in acceptable range) in bone plate fixation of mandibular angular fracture treatment.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10856-024-06842-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-024-06842-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06842-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Performance evaluation of a low-cost Ti-Mo-Fe (TMF8) as a replacement for Ti-6Al-4V for internal fixation implants used in mandibular angular fractures: a finite element analysis study
Stainless steel and titanium-based alloys have been the gold standard when it comes to permanent implants and magnesium-based alloys have been the best option for bioresorbable alloys. Ti-6Al-4V, Ti-64, with its 110 GPa Young’s Modulus is the most commonly employed alloy to manufacture biomedical implants used for treatment of fractures of skeleton. Recently, researchers have developed a new low-cost and toxic Vanadium-free alternative to this alloy, Ti-3Mo-0.5Fe at.%, namely TMF8. This alloy has a 25% lesser Young’s Modulus compared to Ti-6Al-4V and also demonstrated acceptable mechanical properties while possessing better cell proliferation results. The lower Young’s Modulus can aid in lowering stress shielding effects while its cytocompatibility could enhance healing. This work, therefore, tries to use finite element analyses to compare these two alloys (Ti-64 and TMF8) from a practical structural point of view to analyse the advantages and disadvantages of this new alloy and how a low-cost biocompatible alternative (TMF8) can actually prove to be a more viable option. The analyses confirm that TMF8 shows almost similar biomechanics performance to Ti-64 alloy (and in acceptable range) in bone plate fixation of mandibular angular fracture treatment.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.