True-bone-ceramics / type I collagen scaffolds for repairing osteochondral defect

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yuhan Jiang, Tenghai Li, Yingyue Lou, Bingzhang Liu, Yilin Liu, Tian Li, Duo Zhang
{"title":"True-bone-ceramics / type I collagen scaffolds for repairing osteochondral defect","authors":"Yuhan Jiang,&nbsp;Tenghai Li,&nbsp;Yingyue Lou,&nbsp;Bingzhang Liu,&nbsp;Yilin Liu,&nbsp;Tian Li,&nbsp;Duo Zhang","doi":"10.1007/s10856-024-06852-5","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the incidence of cartilage defects has increased dramatically, and its etiology is complex and varied. Osteochondritis dissecans (OCD), as one of the main etiologies, damages both cartilage and bone tissues and can progress to severe osteoarthritis, which has been one of the difficult problems for clinicians. The vigorous development of material science and tissue engineering provides new ideas for the treatment of OCD, in which the selection of scaffold materials is particularly important. In this study, true-bone-ceramics (TBC), which has good mechanical strength and osteoconductivity, and type I collagen (COL1), which has excellent biocompatibility, were chosen as scaffold materials to co-construct the TBC/COL1 scaffold for osteochondral repair. In order to ensure the most appropriate collagen coating concentration, three experimental groups (1, 5, 12 mg/ml) were set up. Through the physicochemical property test, biocompatibility analysis and in vivo implantation experiments of composite scaffolds, 12 mg/ml TBC/COL1 scaffolds present the best repair effect among the three groups.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06852-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06852-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the incidence of cartilage defects has increased dramatically, and its etiology is complex and varied. Osteochondritis dissecans (OCD), as one of the main etiologies, damages both cartilage and bone tissues and can progress to severe osteoarthritis, which has been one of the difficult problems for clinicians. The vigorous development of material science and tissue engineering provides new ideas for the treatment of OCD, in which the selection of scaffold materials is particularly important. In this study, true-bone-ceramics (TBC), which has good mechanical strength and osteoconductivity, and type I collagen (COL1), which has excellent biocompatibility, were chosen as scaffold materials to co-construct the TBC/COL1 scaffold for osteochondral repair. In order to ensure the most appropriate collagen coating concentration, three experimental groups (1, 5, 12 mg/ml) were set up. Through the physicochemical property test, biocompatibility analysis and in vivo implantation experiments of composite scaffolds, 12 mg/ml TBC/COL1 scaffolds present the best repair effect among the three groups.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
文献相关原料
公司名称 产品信息 采购帮参考价格
索莱宝 Cell Live/Dead Viability/Cytotoxicity Kit
CA1630
索莱宝 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC)
E8170
索莱宝 N-Hydroxysuccinimide (NHS)
H8220
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信