Biocompatibility and antibacterial properties of medical stainless steel and titanium modified by alumina and hafnia films prepared by atomic layer deposition

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Ivan Spajić, Miguel Gonçalves Morais, Cláudia Monteiro, M. Cristina L. Martins, Ana Paula Pêgo, Ingrid Milošev
{"title":"Biocompatibility and antibacterial properties of medical stainless steel and titanium modified by alumina and hafnia films prepared by atomic layer deposition","authors":"Ivan Spajić,&nbsp;Miguel Gonçalves Morais,&nbsp;Cláudia Monteiro,&nbsp;M. Cristina L. Martins,&nbsp;Ana Paula Pêgo,&nbsp;Ingrid Milošev","doi":"10.1007/s10856-024-06841-8","DOIUrl":null,"url":null,"abstract":"<div><p>New methods for producing surfaces with suitable biocompatible properties are desirable due to increasing demands for biomedical devices. Stainless steel 316 L and cp- titanium specimens were coated with thin films of alumina and hafnia deposited using the atomic layer deposition method at two temperatures, 180 and 260 °C. The morphology of the films was analysed using scanning electron microscopy, and their surface energies were determined based on drop contact angle measurements. Biocompatibility assays performed using mesenchymal stem cells were evaluated by incubating the specimens and then exposing their extracts to the cells or directly seeding cells on the specimen surfaces. No detrimental effect was noticed for any of the specimens. Antibacterial properties were tested by directly incubating the specimens with the bacteria <i>Staphylococcus aureus</i>. Overall, our data show that all prepared films were biocompatible. Alumina films deposited on cp-titanium at 260 °C outperform the other prepared and tested surfaces regarding antiadhesive properties, which could be related to their low surface energy.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06841-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06841-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

New methods for producing surfaces with suitable biocompatible properties are desirable due to increasing demands for biomedical devices. Stainless steel 316 L and cp- titanium specimens were coated with thin films of alumina and hafnia deposited using the atomic layer deposition method at two temperatures, 180 and 260 °C. The morphology of the films was analysed using scanning electron microscopy, and their surface energies were determined based on drop contact angle measurements. Biocompatibility assays performed using mesenchymal stem cells were evaluated by incubating the specimens and then exposing their extracts to the cells or directly seeding cells on the specimen surfaces. No detrimental effect was noticed for any of the specimens. Antibacterial properties were tested by directly incubating the specimens with the bacteria Staphylococcus aureus. Overall, our data show that all prepared films were biocompatible. Alumina films deposited on cp-titanium at 260 °C outperform the other prepared and tested surfaces regarding antiadhesive properties, which could be related to their low surface energy.

原子层沉积法制备的氧化铝和哈夫纳薄膜改性医用不锈钢和钛的生物相容性和抗菌性能
由于对生物医学设备的需求日益增长,生产具有适当生物相容性能的表面的新方法非常可取。采用原子层沉积法在 180 和 260 °C 两种温度下在不锈钢 316 L 和 cp- 钛试样表面镀上氧化铝和哈夫纳薄膜。使用扫描电子显微镜分析了薄膜的形态,并根据液滴接触角测量结果确定了薄膜的表面能。使用间充质干细胞进行的生物相容性测试是通过培养试样,然后将其提取物暴露于细胞或直接将细胞播种到试样表面来进行评估的。所有试样均未发现有害影响。抗菌性能是通过将试样与金黄色葡萄球菌直接培养来测试的。总之,我们的数据表明,所有制备的薄膜都具有生物相容性。在 260 ℃ 下沉积在 cp 钛上的氧化铝薄膜在抗粘附性方面优于其他制备和测试的表面,这可能与它们的低表面能有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信