{"title":"Electrospun nanofibrous mats loaded with gemcitabine and cisplatin suppress bladder tumor growth by improving the tumor immune microenvironment","authors":"Jing Wang, Yisheng Yin, Xiang Ren, Shaogang Wang, Yunpeng Zhu","doi":"10.1007/s10856-024-06786-y","DOIUrl":"10.1007/s10856-024-06786-y","url":null,"abstract":"<p>The perplexing issues related to positive surgical margins and the considerable negative consequences associated with systemic chemotherapy have posed ongoing challenges for clinicians, especially when it comes to addressing bladder cancer treatment. The current investigation describes the production of nanocomposites loaded with gemcitabine (GEM) and cisplatin (CDDP) through the utilization of electrospinning technology. In vitro and in vivo studies have provided evidence of the strong effectiveness in suppressing tumor advancement while simultaneously reducing the accumulation of chemotherapy drugs within liver and kidney tissues. Mechanically, the GEM and CDDP-loaded electrospun nanocomposites could effectively eliminate myeloid-derived suppressor cells (MDSCs) in tumor tissues, and recruit CD8<sup>+</sup> T cells and NKp46<sup>+</sup> NK cells to kill tumor cells, which can also effectively inhibit tumor microvascular formation. Our investigation into the impact of localized administration of chemotherapy through GEM and CDDP-loaded electrospun nanocomposites on the tumor microenvironment will offer novel insights for tackling tumors.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agata Szczodra, Amel Houaoui, Turkka Salminen, Markus Hannula, Virginia Alessandra Gobbo, Sonya Ghanavati, Susanna Miettinen, Jonathan Massera
{"title":"Pore graded borosilicate bioactive glass scaffolds: in vitro dissolution and cytocompatibility","authors":"Agata Szczodra, Amel Houaoui, Turkka Salminen, Markus Hannula, Virginia Alessandra Gobbo, Sonya Ghanavati, Susanna Miettinen, Jonathan Massera","doi":"10.1007/s10856-024-06791-1","DOIUrl":"10.1007/s10856-024-06791-1","url":null,"abstract":"<div><p>3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca<sup>2+</sup> ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Tao, Meng Jia, Yang Shao-Qiang, Cheng-Teng Lai, Qian Hong, Yu Xin, Jiang Hui, Cao Qing-Gang, Xu Jian-Da, Bao Ni-Rong
{"title":"A novel fluffy PLGA/HA composite scaffold for bone defect repair","authors":"Yuan Tao, Meng Jia, Yang Shao-Qiang, Cheng-Teng Lai, Qian Hong, Yu Xin, Jiang Hui, Cao Qing-Gang, Xu Jian-Da, Bao Ni-Rong","doi":"10.1007/s10856-024-06782-2","DOIUrl":"10.1007/s10856-024-06782-2","url":null,"abstract":"<div><p>Treatment of bone defects remains crucial challenge for successful bone healing, which arouses great interests in designing and fabricating ideal biomaterials. In this regard, the present study focuses on developing a novel fluffy scaffold of poly Lactide-co-glycolide (PLGA) composites with hydroxyapatite (HA) scaffold used in bone defect repair in rabbits. This fluffy PLGA/HA composite scaffold was fabricated by using multi-electro-spinning combined with biomineralization technology. In vitro analysis of human bone marrow mesenchymal stem cells (BMSCs) seeded onto fluffy PLGA/HA composite scaffold showed their ability to adhere, proliferate and cell viability. Transplant of fluffy PLGA/HA composite scaffold in a rabbit model showed a significant increase in mineralized tissue production compared to conventional and fluffy PLGA/HA composite scaffold. These findings are promising for fluffy PLGA/HA composite scaffolds used in bone defects.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo Anitua, Ander Pino, Roberto Prado, Francisco Muruzabal, Mohammad Hamdan Alkhraisat
{"title":"Biochemical and biomechanical characterization of an autologous protein-based fibrin sealant for regenerative medicine","authors":"Eduardo Anitua, Ander Pino, Roberto Prado, Francisco Muruzabal, Mohammad Hamdan Alkhraisat","doi":"10.1007/s10856-024-06780-4","DOIUrl":"10.1007/s10856-024-06780-4","url":null,"abstract":"<div><p>Accidental events or surgical procedures usually lead to tissue injury. Fibrin sealants have proven to optimize the healing process but have some drawbacks due to their allogeneic nature. Autologous fibrin sealants present several advantages. The aim of this study is to evaluate the performance of a new autologous fibrin sealant based on Endoret®PRGF® technology (E-sealant). One of the most widely used commercial fibrin sealants (Tisseel®) was included as comparative Control. E-sealant´s hematological and biological properties were characterized. The coagulation kinetics and the microstructure were compared. Their rheological profile and biomechanical behavior were also recorded. Finally, the swelling/shrinkage capacity and the enzymatic degradation of adhesives were determined. E-sealant presented a moderate platelet concentration and physiological levels of fibrinogen and thrombin. It clotted 30 s after activation. The microstructure of E-sealant showed a homogeneous fibrillar scaffold with numerous and scattered platelet aggregates. In contrast, Control presented absence of blood cells and amorphous protein deposits. Although in different order of magnitude, both adhesives had similar rheological profiles and viscoelasticity. Control showed a higher hardness but both adhesives presented a pseudoplastic hydrogel nature with a shear thinning behavior. Regarding their adhesiveness, E-sealant presented a higher tensile strength before cohesive failure but their elastic stretching capacity and maximum elongation was similar. While E-sealant presented a significant shrinkage process, Control showed a slight swelling over time. In addition, E-sealant presented a high enzymatic resorption rate, while Control showed to withstand the biodegradation process in a significant way. E-sealant presents optimal biochemical and biomechanical properties suitable for its use as a fibrin sealant with regenerative purposes.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carla David, Jaqueline F. de Souza, Adriana F. Silva, Guillermo Grazioli, Andressa S. Barboza, Rafael G. Lund, André R. Fajardo, Rafael R. Moraes
{"title":"Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications","authors":"Carla David, Jaqueline F. de Souza, Adriana F. Silva, Guillermo Grazioli, Andressa S. Barboza, Rafael G. Lund, André R. Fajardo, Rafael R. Moraes","doi":"10.1007/s10856-023-06773-9","DOIUrl":"10.1007/s10856-023-06773-9","url":null,"abstract":"<div><p>In this study, poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with cannabidiol (CBD) were synthesized (PLGA@CBD microparticles) and embedded up to 10 wt% in a chondroitin sulfate/polyvinyl alcohol hydrogel matrix. In vitro chemical, physical, and biological assays were carried out to validate the potential use of the modified hydrogels as biomaterials. The microparticles had spherical morphology and a narrow range of size distribution. CBD encapsulation efficiency was around 52%, loading was approximately 50%. Microparticle addition to the hydrogels caused minor changes in their morphology, FTIR and thermal analyses confirmed these changes. Swelling degree and total porosity were reduced in the presence of microparticles, but similar hydrophilic and degradation in phosphate buffer solution behaviors were observed by all hydrogels. Rupture force and maximum strain at rupture were higher in the modified hydrogels, whereas modulus of elasticity was similar across all materials. Viability of primary human dental pulp cells up to 21 days was generally not influenced by the addition of PLGA@CBD microparticles. The control hydrogel showed no antimicrobial activity against <i>Staphylococcus aureus</i>, whereas hydrogels with 5% and 10% PLGA@CBD microparticles showed inhibition zones. In conclusion, the PLGA@CBD microparticles were fabricated and successfully embedded in a hydrogel matrix. Despite the hydrophobic nature of CBD, the physicochemical and morphological properties were generally similar for the hydrogels with and without the CBD-loaded microparticles. The data reported in this study suggested that this original biomaterial loaded with CBD oil has characteristics that could enable it to be used as a scaffold for tissue/cellular regeneration.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Camila Soares Lopes, Mateus Machado Delfino, Mário Tanomaru-Filho, Estela Sasso-Cerri, Juliane Maria Guerreiro-Tanomaru, Paulo Sérgio Cerri
{"title":"Bioactive potential of Bio-C Temp demonstrated by systemic mineralization markers and immunoexpression of bone proteins in the rat connective tissue","authors":"Camila Soares Lopes, Mateus Machado Delfino, Mário Tanomaru-Filho, Estela Sasso-Cerri, Juliane Maria Guerreiro-Tanomaru, Paulo Sérgio Cerri","doi":"10.1007/s10856-024-06781-3","DOIUrl":"10.1007/s10856-024-06781-3","url":null,"abstract":"<div><p>Intracanal medications are used in endodontic treatment due to their antibacterial activity and ability to induce the periapical repair. Among the intracanal medications, the Calen (CAL; SS. White, Brazil) is a calcium hydroxide-based medication that provides an alkaline pH and releases calcium, exerting an antimicrobial activity. Bio-C Temp (BIO; Angelus, Brazil), a ready-to-use bioceramic intracanal medication, was designed to stimulate the mineralized tissues formation. Here, we investigated the bioactive potential of BIO in comparison to the CAL in the rat subcutaneous. Polyethylene tubes filled with medications, and empty tubes (control group, CG) were implanted in the subcutaneous tissue of rats. After 7, 15, 30 and 60 days, the blood was collected for calcium (Ca<sup>+2</sup>) and alkaline phosphatase (ALP) measurement, and the capsules around the implants were processed for morphological analyses. The data were submitted to two-way ANOVA and Tukey test (p < 0.05). At 7, 15 and 30 days, the ALP level was grater in BIO and CAL than in CG (p < 0.0001). At 7 and 15 days, greater Ca<sup>+2</sup> level was seen in the serum of CAL samples. From 7 to 60 days, an increase in the number of fibroblasts, osteocalcin- and osteopontin-immunolabelled cells was observed in BIO and CAL groups (p < 0.0001). In all periods, BIO and CAL specimens showed von Kossa-positive structures. Moreover, ultrastructural analysis revealed globules of mineralization in the capsules around the BIO and CAL specimens. Thus Bio-C Temp caused an increase in the ALP, osteocalcin and osteopontin, which may have allowed the formation of calcite, suggesting bioactive potential.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jéssica Peixoto Rodrigues, Jéssica Regina da Costa Silva, Bruno Antônio Ferreira, Lucas Ian Veloso, Ludmila Sousa Quirino, Roberta Rezende Rosa, Matheus Carvalho Barbosa, Cláudia Mendonça Rodrigues, Paula Batista Fernandes Gaspari, Marcelo Emílio Beletti, Luiz Ricardo Goulart, Natássia Caroline Resende Corrêa
{"title":"Development of collagenous scaffolds for wound healing: characterization and in vivo analysis.","authors":"Jéssica Peixoto Rodrigues, Jéssica Regina da Costa Silva, Bruno Antônio Ferreira, Lucas Ian Veloso, Ludmila Sousa Quirino, Roberta Rezende Rosa, Matheus Carvalho Barbosa, Cláudia Mendonça Rodrigues, Paula Batista Fernandes Gaspari, Marcelo Emílio Beletti, Luiz Ricardo Goulart, Natássia Caroline Resende Corrêa","doi":"10.1007/s10856-023-06774-8","DOIUrl":"10.1007/s10856-023-06774-8","url":null,"abstract":"<p><p>The development of wound dressings from biomaterials has been the subject of research due to their unique structural and functional characteristics. Proteins from animal origin, such as collagen and chitosan, act as promising materials for applications in injuries and chronic wounds, functioning as a repairing agent. This study aims to evaluate in vitro effects of scaffolds with different formulations containing bioactive compounds such as collagen, chitosan, N-acetylcysteine (NAC) and ε-poly-lysine (ε-PL). We manufactured a scaffold made of a collagen hydrogel bioconjugated with chitosan by crosslinking and addition of NAC and ε-PL. Cell viability was verified by resazurin and live/dead assays and the ultrastructure of biomaterials was evaluated by SEM. Antimicrobial sensitivity was assessed by antibiogram. The healing potential of the biomaterial was evaluated in vivo, in a model of healing of excisional wounds in mice. On the 7th day after the injury, the wounds and surrounding skin were processed for evaluation of biochemical and histological parameters associated with the inflammatory process. The results showed great cell viability and increase in porosity after crosslinking while antimicrobial action was observed in scaffolds containing NAC and ε-PL. Chitosan scaffolds bioconjugated with NAC/ε-PL showed improvement in tissue healing, with reduced lesion size and reduced inflammation. It is concluded that scaffolds crosslinked with chitosan-NAC-ε-PL have the desirable characteristics for tissue repair at low cost and could be considered promising biomaterials in the practice of regenerative medicine.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"12"},"PeriodicalIF":4.2,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz
{"title":"Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture.","authors":"Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz","doi":"10.1007/s10856-024-06776-0","DOIUrl":"10.1007/s10856-024-06776-0","url":null,"abstract":"<p><p>The study of a macromolecule derived from DPP and triphenylamine, (DPP-BisTPA) by computational chemistry, its synthesis by direct arylation, optical characterization (UV-Vis and fluorescence) and electrochemistry (cyclic voltammetry), as well as its evaluation as a generator of reactive oxygen species indirectly, through the degradation of uric acid. The results obtained by DFT using B3LYP/6-31G (d, p) and TD-DFT using CAM-B3LYP/6-31G (d, p) reveal values of energy levels of the first singlet and triplet excited state that indicate a possible intersystem crossover and the possible generation of reactive oxygen species by a type I mechanism. The compound presents an absorption region within the phototherapeutic window. The electrochemical bandgap is 1.64 eV which suggests a behavior as a semiconductor. DPP-BisTPa were processed as hemispherical nanoparticles with a size around 100 nm, and NPOs were evaluated as a photosensitizer with a ROS generation yield of 4% using a photodynamic therapy flashlight as the light source.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"11"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Athina Mitropoulou, Dionysios N Markatos, Andreas Dimopoulos, Antonia Marazioti, Constantinos-Marios Mikelis, Dimosthenis Mavrilas
{"title":"Development and Evaluation of Biodegradable Core-Shell Microfibrous and Nanofibrous Scaffolds for Tissue Engineering Applications.","authors":"Athina Mitropoulou, Dionysios N Markatos, Andreas Dimopoulos, Antonia Marazioti, Constantinos-Marios Mikelis, Dimosthenis Mavrilas","doi":"10.1007/s10856-024-06777-z","DOIUrl":"10.1007/s10856-024-06777-z","url":null,"abstract":"<p><p>Tissue engineering scaffolds as three-dimensional substrates may serve as ideal templates for tissue regeneration by simulating the structure of the extracellular matrix (ECM). Many biodegradable synthetic polymers, either hydrophobic, like Poly-ε-caprolactone (PCL), or hydrophilic, like Poly(Vinyl Alcohol) (PVA), are widely used as candidate bioactive materials for fabricating tissue engineering scaffolds. However, a combination of good cytocompatibility of hydrophilic polymers with good biomechanical performance of hydrophobic polymers could be beneficial for the in vivo performance of the scaffolds. In this study, we aimed to fabricate biodegradable fibrous scaffolds by combining the properties of hydrophobic PCL with those of hydrophilic PVA and evaluate their properties in comparison with pristine PCL scaffolds. Therefore, single-layered PCL scaffolds, sequential tri-layered (PVA/PCL/PVA), and core-shell (PVA as shell and PCL as core) composite scaffolds were developed utilizing the electrospinning technique. The material structural and biomechanical properties of the electrospun scaffolds, before and after their hydrolytic degradation over a seven-month period following storage in phosphate-buffered saline (PBS) at 37 °C, were comprehensively compared. In addition, human embryonic kidney cells (HEK-293) were cultured on the scaffolds to investigate potential cell attachment, infiltration, and proliferation. The results demonstrated the long-term efficacy of core-shell biodegradable fibrous scaffolds in comparison to single-layers PCL and tri-layers PVA/PCL/PVA, not only due to its superior morphological characteristics and mechanical properties, but also due to its ability to promote homogeneous cell distribution and proliferation, without any external chemical or physical stimuli.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"10"},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatima Kadi, Ghasem Dini, S Ali Poursamar, Fatemeh Ejeian
{"title":"Fabrication and characterization of 3D-printed composite scaffolds of coral-derived hydroxyapatite nanoparticles/polycaprolactone/gelatin carrying doxorubicin for bone tissue engineering.","authors":"Fatima Kadi, Ghasem Dini, S Ali Poursamar, Fatemeh Ejeian","doi":"10.1007/s10856-024-06779-x","DOIUrl":"10.1007/s10856-024-06779-x","url":null,"abstract":"<p><p>In this study, nanocomposite scaffolds of hydroxyapatite (HA)/polycaprolactone (PCL)/gelatin (Gel) with varying amounts of HA (42-52 wt. %), PCL (42-52 wt. %), and Gel (6 wt. %) were 3D printed. Subsequently, a scaffold with optimal mechanical properties was utilized as a carrier for doxorubicin (DOX) in the treatment of bone cancer. For this purpose, HA nanoparticles were first synthesized by the hydrothermal conversion of Acropora coral and characterized by using different techniques. Also, a compression test was performed to investigate the mechanical properties of the fabricated scaffolds. The mineralization of the optimal scaffold was determined by immersing it in simulated body fluid (SBF) solution for 28 days, and the biocompatibility was investigated by seeding MG-63 osteoblast-like cells on it after 1-7 days. The obtained results showed that the average size of the synthesized HA particles was about 80 nm. The compressive modulus and strength of the scaffold with 47 wt. % HA was reported to be 0.29 GPa and 9.9 MPa, respectively, which was in the range of trabecular bones. In addition, the scaffold surface was entirely coated with an apatite layer after 28 days of soaking in SBF. Also, the efficiency and loading percentage of DOX were obtained as 30.8 and 1.6%, respectively. The drug release behavior was stable for 14 days. Cytotoxicity and adhesion evaluations showed that the fabricated scaffold had no negative effects on the viability of MG-63 cells and led to their proliferation during the investigated period. From these results, it can be concluded that the HA/PCL/Gel scaffold prepared in this study, in addition to its drug release capability, has good bioactivity, mechanical properties, and biocompatibility, and can be considered a suitable option for bone tumor treatment.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"7"},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}