Journal of Materials Science: Materials in Medicine最新文献

筛选
英文 中文
Curcumin coating: a novel solution to mitigate inherent carbon nanotube toxicity 姜黄素涂层:减轻碳纳米管固有毒性的新型解决方案。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-03-25 DOI: 10.1007/s10856-024-06789-9
Samiksha Rele, Chanchal Kiran Thakur, Fatima Khan, Budhadev Baral, Vaishali Saini, Chandrabose Karthikeyan, N. S. Hari Narayana Moorthy, Hem Chandra Jha
{"title":"Curcumin coating: a novel solution to mitigate inherent carbon nanotube toxicity","authors":"Samiksha Rele,&nbsp;Chanchal Kiran Thakur,&nbsp;Fatima Khan,&nbsp;Budhadev Baral,&nbsp;Vaishali Saini,&nbsp;Chandrabose Karthikeyan,&nbsp;N. S. Hari Narayana Moorthy,&nbsp;Hem Chandra Jha","doi":"10.1007/s10856-024-06789-9","DOIUrl":"10.1007/s10856-024-06789-9","url":null,"abstract":"<p>Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called <i>Curcuma longa</i>. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1β, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.</p><p>(a) Synthesis of Curcumin-coated-Lysine-functionalized MWCNTs. (b) Flow of research depicting experimental groups and studies performed along with the underlying techniques used.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun nanofibrous mats loaded with gemcitabine and cisplatin suppress bladder tumor growth by improving the tumor immune microenvironment 负载吉西他滨和顺铂的电纺纳米纤维垫通过改善肿瘤免疫微环境抑制膀胱肿瘤的生长。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-03-25 DOI: 10.1007/s10856-024-06786-y
Jing Wang, Yisheng Yin, Xiang Ren, Shaogang Wang, Yunpeng Zhu
{"title":"Electrospun nanofibrous mats loaded with gemcitabine and cisplatin suppress bladder tumor growth by improving the tumor immune microenvironment","authors":"Jing Wang,&nbsp;Yisheng Yin,&nbsp;Xiang Ren,&nbsp;Shaogang Wang,&nbsp;Yunpeng Zhu","doi":"10.1007/s10856-024-06786-y","DOIUrl":"10.1007/s10856-024-06786-y","url":null,"abstract":"<p>The perplexing issues related to positive surgical margins and the considerable negative consequences associated with systemic chemotherapy have posed ongoing challenges for clinicians, especially when it comes to addressing bladder cancer treatment. The current investigation describes the production of nanocomposites loaded with gemcitabine (GEM) and cisplatin (CDDP) through the utilization of electrospinning technology. In vitro and in vivo studies have provided evidence of the strong effectiveness in suppressing tumor advancement while simultaneously reducing the accumulation of chemotherapy drugs within liver and kidney tissues. Mechanically, the GEM and CDDP-loaded electrospun nanocomposites could effectively eliminate myeloid-derived suppressor cells (MDSCs) in tumor tissues, and recruit CD8<sup>+</sup> T cells and NKp46<sup>+</sup> NK cells to kill tumor cells, which can also effectively inhibit tumor microvascular formation. Our investigation into the impact of localized administration of chemotherapy through GEM and CDDP-loaded electrospun nanocomposites on the tumor microenvironment will offer novel insights for tackling tumors.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore graded borosilicate bioactive glass scaffolds: in vitro dissolution and cytocompatibility 孔分级硼硅酸盐生物活性玻璃支架:体外溶解和细胞相容性。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-03-20 DOI: 10.1007/s10856-024-06791-1
Agata Szczodra, Amel Houaoui, Turkka Salminen, Markus Hannula, Virginia Alessandra Gobbo, Sonya Ghanavati, Susanna Miettinen, Jonathan Massera
{"title":"Pore graded borosilicate bioactive glass scaffolds: in vitro dissolution and cytocompatibility","authors":"Agata Szczodra,&nbsp;Amel Houaoui,&nbsp;Turkka Salminen,&nbsp;Markus Hannula,&nbsp;Virginia Alessandra Gobbo,&nbsp;Sonya Ghanavati,&nbsp;Susanna Miettinen,&nbsp;Jonathan Massera","doi":"10.1007/s10856-024-06791-1","DOIUrl":"10.1007/s10856-024-06791-1","url":null,"abstract":"<div><p>3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca<sup>2+</sup> ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel fluffy PLGA/HA composite scaffold for bone defect repair 用于骨缺损修复的新型绒毛状 PLGA/HA 复合支架。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-03-15 DOI: 10.1007/s10856-024-06782-2
Yuan Tao, Meng Jia, Yang Shao-Qiang, Cheng-Teng Lai, Qian Hong, Yu Xin, Jiang Hui, Cao Qing-Gang, Xu Jian-Da, Bao Ni-Rong
{"title":"A novel fluffy PLGA/HA composite scaffold for bone defect repair","authors":"Yuan Tao,&nbsp;Meng Jia,&nbsp;Yang Shao-Qiang,&nbsp;Cheng-Teng Lai,&nbsp;Qian Hong,&nbsp;Yu Xin,&nbsp;Jiang Hui,&nbsp;Cao Qing-Gang,&nbsp;Xu Jian-Da,&nbsp;Bao Ni-Rong","doi":"10.1007/s10856-024-06782-2","DOIUrl":"10.1007/s10856-024-06782-2","url":null,"abstract":"<div><p>Treatment of bone defects remains crucial challenge for successful bone healing, which arouses great interests in designing and fabricating ideal biomaterials. In this regard, the present study focuses on developing a novel fluffy scaffold of poly Lactide-co-glycolide (PLGA) composites with hydroxyapatite (HA) scaffold used in bone defect repair in rabbits. This fluffy PLGA/HA composite scaffold was fabricated by using multi-electro-spinning combined with biomineralization technology. In vitro analysis of human bone marrow mesenchymal stem cells (BMSCs) seeded onto fluffy PLGA/HA composite scaffold showed their ability to adhere, proliferate and cell viability. Transplant of fluffy PLGA/HA composite scaffold in a rabbit model showed a significant increase in mineralized tissue production compared to conventional and fluffy PLGA/HA composite scaffold. These findings are promising for fluffy PLGA/HA composite scaffolds used in bone defects.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical and biomechanical characterization of an autologous protein-based fibrin sealant for regenerative medicine 用于再生医学的自体蛋白基纤维蛋白密封剂的生物化学和生物力学特征。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-03-08 DOI: 10.1007/s10856-024-06780-4
Eduardo Anitua, Ander Pino, Roberto Prado, Francisco Muruzabal, Mohammad Hamdan Alkhraisat
{"title":"Biochemical and biomechanical characterization of an autologous protein-based fibrin sealant for regenerative medicine","authors":"Eduardo Anitua,&nbsp;Ander Pino,&nbsp;Roberto Prado,&nbsp;Francisco Muruzabal,&nbsp;Mohammad Hamdan Alkhraisat","doi":"10.1007/s10856-024-06780-4","DOIUrl":"10.1007/s10856-024-06780-4","url":null,"abstract":"<div><p>Accidental events or surgical procedures usually lead to tissue injury. Fibrin sealants have proven to optimize the healing process but have some drawbacks due to their allogeneic nature. Autologous fibrin sealants present several advantages. The aim of this study is to evaluate the performance of a new autologous fibrin sealant based on Endoret®PRGF® technology (E-sealant). One of the most widely used commercial fibrin sealants (Tisseel®) was included as comparative Control. E-sealant´s hematological and biological properties were characterized. The coagulation kinetics and the microstructure were compared. Their rheological profile and biomechanical behavior were also recorded. Finally, the swelling/shrinkage capacity and the enzymatic degradation of adhesives were determined. E-sealant presented a moderate platelet concentration and physiological levels of fibrinogen and thrombin. It clotted 30 s after activation. The microstructure of E-sealant showed a homogeneous fibrillar scaffold with numerous and scattered platelet aggregates. In contrast, Control presented absence of blood cells and amorphous protein deposits. Although in different order of magnitude, both adhesives had similar rheological profiles and viscoelasticity. Control showed a higher hardness but both adhesives presented a pseudoplastic hydrogel nature with a shear thinning behavior. Regarding their adhesiveness, E-sealant presented a higher tensile strength before cohesive failure but their elastic stretching capacity and maximum elongation was similar. While E-sealant presented a significant shrinkage process, Control showed a slight swelling over time. In addition, E-sealant presented a high enzymatic resorption rate, while Control showed to withstand the biodegradation process in a significant way. E-sealant presents optimal biochemical and biomechanical properties suitable for its use as a fibrin sealant with regenerative purposes.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications 嵌入多孔水凝胶基质中的大麻二酚微颗粒用于生物医学应用。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-02-14 DOI: 10.1007/s10856-023-06773-9
Carla David, Jaqueline F. de Souza, Adriana F. Silva, Guillermo Grazioli, Andressa S. Barboza, Rafael G. Lund, André R. Fajardo, Rafael R. Moraes
{"title":"Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications","authors":"Carla David,&nbsp;Jaqueline F. de Souza,&nbsp;Adriana F. Silva,&nbsp;Guillermo Grazioli,&nbsp;Andressa S. Barboza,&nbsp;Rafael G. Lund,&nbsp;André R. Fajardo,&nbsp;Rafael R. Moraes","doi":"10.1007/s10856-023-06773-9","DOIUrl":"10.1007/s10856-023-06773-9","url":null,"abstract":"<div><p>In this study, poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with cannabidiol (CBD) were synthesized (PLGA@CBD microparticles) and embedded up to 10 wt% in a chondroitin sulfate/polyvinyl alcohol hydrogel matrix. In vitro chemical, physical, and biological assays were carried out to validate the potential use of the modified hydrogels as biomaterials. The microparticles had spherical morphology and a narrow range of size distribution. CBD encapsulation efficiency was around 52%, loading was approximately 50%. Microparticle addition to the hydrogels caused minor changes in their morphology, FTIR and thermal analyses confirmed these changes. Swelling degree and total porosity were reduced in the presence of microparticles, but similar hydrophilic and degradation in phosphate buffer solution behaviors were observed by all hydrogels. Rupture force and maximum strain at rupture were higher in the modified hydrogels, whereas modulus of elasticity was similar across all materials. Viability of primary human dental pulp cells up to 21 days was generally not influenced by the addition of PLGA@CBD microparticles. The control hydrogel showed no antimicrobial activity against <i>Staphylococcus aureus</i>, whereas hydrogels with 5% and 10% PLGA@CBD microparticles showed inhibition zones. In conclusion, the PLGA@CBD microparticles were fabricated and successfully embedded in a hydrogel matrix. Despite the hydrophobic nature of CBD, the physicochemical and morphological properties were generally similar for the hydrogels with and without the CBD-loaded microparticles. The data reported in this study suggested that this original biomaterial loaded with CBD oil has characteristics that could enable it to be used as a scaffold for tissue/cellular regeneration.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive potential of Bio-C Temp demonstrated by systemic mineralization markers and immunoexpression of bone proteins in the rat connective tissue 大鼠结缔组织中的全身矿化标志物和骨蛋白质的免疫表达证明了 Bio-C Temp 的生物活性潜力。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-02-14 DOI: 10.1007/s10856-024-06781-3
Camila Soares Lopes, Mateus Machado Delfino, Mário Tanomaru-Filho, Estela Sasso-Cerri, Juliane Maria Guerreiro-Tanomaru, Paulo Sérgio Cerri
{"title":"Bioactive potential of Bio-C Temp demonstrated by systemic mineralization markers and immunoexpression of bone proteins in the rat connective tissue","authors":"Camila Soares Lopes,&nbsp;Mateus Machado Delfino,&nbsp;Mário Tanomaru-Filho,&nbsp;Estela Sasso-Cerri,&nbsp;Juliane Maria Guerreiro-Tanomaru,&nbsp;Paulo Sérgio Cerri","doi":"10.1007/s10856-024-06781-3","DOIUrl":"10.1007/s10856-024-06781-3","url":null,"abstract":"<div><p>Intracanal medications are used in endodontic treatment due to their antibacterial activity and ability to induce the periapical repair. Among the intracanal medications, the Calen (CAL; SS. White, Brazil) is a calcium hydroxide-based medication that provides an alkaline pH and releases calcium, exerting an antimicrobial activity. Bio-C Temp (BIO; Angelus, Brazil), a ready-to-use bioceramic intracanal medication, was designed to stimulate the mineralized tissues formation. Here, we investigated the bioactive potential of BIO in comparison to the CAL in the rat subcutaneous. Polyethylene tubes filled with medications, and empty tubes (control group, CG) were implanted in the subcutaneous tissue of rats. After 7, 15, 30 and 60 days, the blood was collected for calcium (Ca<sup>+2</sup>) and alkaline phosphatase (ALP) measurement, and the capsules around the implants were processed for morphological analyses. The data were submitted to two-way ANOVA and Tukey test (p &lt; 0.05). At 7, 15 and 30 days, the ALP level was grater in BIO and CAL than in CG (p &lt; 0.0001). At 7 and 15 days, greater Ca<sup>+2</sup> level was seen in the serum of CAL samples. From 7 to 60 days, an increase in the number of fibroblasts, osteocalcin- and osteopontin-immunolabelled cells was observed in BIO and CAL groups (p &lt; 0.0001). In all periods, BIO and CAL specimens showed von Kossa-positive structures. Moreover, ultrastructural analysis revealed globules of mineralization in the capsules around the BIO and CAL specimens. Thus Bio-C Temp caused an increase in the ALP, osteocalcin and osteopontin, which may have allowed the formation of calcite, suggesting bioactive potential.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of collagenous scaffolds for wound healing: characterization and in vivo analysis. 开发用于伤口愈合的胶原支架:特征描述和体内分析。
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-02-05 DOI: 10.1007/s10856-023-06774-8
Jéssica Peixoto Rodrigues, Jéssica Regina da Costa Silva, Bruno Antônio Ferreira, Lucas Ian Veloso, Ludmila Sousa Quirino, Roberta Rezende Rosa, Matheus Carvalho Barbosa, Cláudia Mendonça Rodrigues, Paula Batista Fernandes Gaspari, Marcelo Emílio Beletti, Luiz Ricardo Goulart, Natássia Caroline Resende Corrêa
{"title":"Development of collagenous scaffolds for wound healing: characterization and in vivo analysis.","authors":"Jéssica Peixoto Rodrigues, Jéssica Regina da Costa Silva, Bruno Antônio Ferreira, Lucas Ian Veloso, Ludmila Sousa Quirino, Roberta Rezende Rosa, Matheus Carvalho Barbosa, Cláudia Mendonça Rodrigues, Paula Batista Fernandes Gaspari, Marcelo Emílio Beletti, Luiz Ricardo Goulart, Natássia Caroline Resende Corrêa","doi":"10.1007/s10856-023-06774-8","DOIUrl":"10.1007/s10856-023-06774-8","url":null,"abstract":"<p><p>The development of wound dressings from biomaterials has been the subject of research due to their unique structural and functional characteristics. Proteins from animal origin, such as collagen and chitosan, act as promising materials for applications in injuries and chronic wounds, functioning as a repairing agent. This study aims to evaluate in vitro effects of scaffolds with different formulations containing bioactive compounds such as collagen, chitosan, N-acetylcysteine (NAC) and ε-poly-lysine (ε-PL). We manufactured a scaffold made of a collagen hydrogel bioconjugated with chitosan by crosslinking and addition of NAC and ε-PL. Cell viability was verified by resazurin and live/dead assays and the ultrastructure of biomaterials was evaluated by SEM. Antimicrobial sensitivity was assessed by antibiogram. The healing potential of the biomaterial was evaluated in vivo, in a model of healing of excisional wounds in mice. On the 7th day after the injury, the wounds and surrounding skin were processed for evaluation of biochemical and histological parameters associated with the inflammatory process. The results showed great cell viability and increase in porosity after crosslinking while antimicrobial action was observed in scaffolds containing NAC and ε-PL. Chitosan scaffolds bioconjugated with NAC/ε-PL showed improvement in tissue healing, with reduced lesion size and reduced inflammation. It is concluded that scaffolds crosslinked with chitosan-NAC-ε-PL have the desirable characteristics for tissue repair at low cost and could be considered promising biomaterials in the practice of regenerative medicine.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"12"},"PeriodicalIF":3.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture. 合成一种潜在的 DPP 衍生光敏剂,并评估其光物理性质,用于 D-A-D 结构的光动力疗法。
IF 3.7 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-02-01 DOI: 10.1007/s10856-024-06776-0
Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz
{"title":"Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture.","authors":"Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz","doi":"10.1007/s10856-024-06776-0","DOIUrl":"10.1007/s10856-024-06776-0","url":null,"abstract":"<p><p>The study of a macromolecule derived from DPP and triphenylamine, (DPP-BisTPA) by computational chemistry, its synthesis by direct arylation, optical characterization (UV-Vis and fluorescence) and electrochemistry (cyclic voltammetry), as well as its evaluation as a generator of reactive oxygen species indirectly, through the degradation of uric acid. The results obtained by DFT using B3LYP/6-31G (d, p) and TD-DFT using CAM-B3LYP/6-31G (d, p) reveal values of energy levels of the first singlet and triplet excited state that indicate a possible intersystem crossover and the possible generation of reactive oxygen species by a type I mechanism. The compound presents an absorption region within the phototherapeutic window. The electrochemical bandgap is 1.64 eV which suggests a behavior as a semiconductor. DPP-BisTPa were processed as hemispherical nanoparticles with a size around 100 nm, and NPOs were evaluated as a photosensitizer with a ROS generation yield of 4% using a photodynamic therapy flashlight as the light source.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"11"},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Evaluation of Biodegradable Core-Shell Microfibrous and Nanofibrous Scaffolds for Tissue Engineering Applications. 用于组织工程应用的可生物降解核壳微纤维和纳米纤维支架的开发与评估。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-01-29 DOI: 10.1007/s10856-024-06777-z
Athina Mitropoulou, Dionysios N Markatos, Andreas Dimopoulos, Antonia Marazioti, Constantinos-Marios Mikelis, Dimosthenis Mavrilas
{"title":"Development and Evaluation of Biodegradable Core-Shell Microfibrous and Nanofibrous Scaffolds for Tissue Engineering Applications.","authors":"Athina Mitropoulou, Dionysios N Markatos, Andreas Dimopoulos, Antonia Marazioti, Constantinos-Marios Mikelis, Dimosthenis Mavrilas","doi":"10.1007/s10856-024-06777-z","DOIUrl":"10.1007/s10856-024-06777-z","url":null,"abstract":"<p><p>Tissue engineering scaffolds as three-dimensional substrates may serve as ideal templates for tissue regeneration by simulating the structure of the extracellular matrix (ECM). Many biodegradable synthetic polymers, either hydrophobic, like Poly-ε-caprolactone (PCL), or hydrophilic, like Poly(Vinyl Alcohol) (PVA), are widely used as candidate bioactive materials for fabricating tissue engineering scaffolds. However, a combination of good cytocompatibility of hydrophilic polymers with good biomechanical performance of hydrophobic polymers could be beneficial for the in vivo performance of the scaffolds. In this study, we aimed to fabricate biodegradable fibrous scaffolds by combining the properties of hydrophobic PCL with those of hydrophilic PVA and evaluate their properties in comparison with pristine PCL scaffolds. Therefore, single-layered PCL scaffolds, sequential tri-layered (PVA/PCL/PVA), and core-shell (PVA as shell and PCL as core) composite scaffolds were developed utilizing the electrospinning technique. The material structural and biomechanical properties of the electrospun scaffolds, before and after their hydrolytic degradation over a seven-month period following storage in phosphate-buffered saline (PBS) at 37 °C, were comprehensively compared. In addition, human embryonic kidney cells (HEK-293) were cultured on the scaffolds to investigate potential cell attachment, infiltration, and proliferation. The results demonstrated the long-term efficacy of core-shell biodegradable fibrous scaffolds in comparison to single-layers PCL and tri-layers PVA/PCL/PVA, not only due to its superior morphological characteristics and mechanical properties, but also due to its ability to promote homogeneous cell distribution and proliferation, without any external chemical or physical stimuli.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"10"},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信