Enhanced osteogenic capacity of octacalcium phosphate involving adsorption of stromal-derived factor-1 in a standardized defect of a rat femur

IF 4.5 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Ryuichi Kanabuchi, Ryo Hamai, Yu Mori, Soshi Hamada, Yukari Shiwaku, Yuko Sai, Kaori Tsuchiya, Toshimi Aizawa, Osamu Suzuki
{"title":"Enhanced osteogenic capacity of octacalcium phosphate involving adsorption of stromal-derived factor-1 in a standardized defect of a rat femur","authors":"Ryuichi Kanabuchi,&nbsp;Ryo Hamai,&nbsp;Yu Mori,&nbsp;Soshi Hamada,&nbsp;Yukari Shiwaku,&nbsp;Yuko Sai,&nbsp;Kaori Tsuchiya,&nbsp;Toshimi Aizawa,&nbsp;Osamu Suzuki","doi":"10.1007/s10856-025-06872-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated whether octacalcium phosphate (OCP) enhances bone regeneration through its synergistic effect with stromal-derived factor-1 (SDF-1). Recombinant SDF-1 (0.5–5.0 μg) was combined with OCP granules through lyophilization. OCP/SDF-1 granules were implanted into a rat femoral standardized defect for 2 and 4 weeks and subjected to histomorphometry, C-X-C motif chemokine receptor 4 (CXCR4) and osteocalcin immunohistomorphometry, and tartrate-resistant acid phosphatase (TRAP) staining. Calcium-deficient hydroxyapatite (CDHA) was used as a control for in vitro analyses. Mesenchymal stem cell (MSC) migration was estimated using a Transwell system with OCP/SDF-1. SDF-1 release from OCP/SDF-1 into the supernatant was determined without cells. SDF-1 adsorption in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer onto OCP, the chemical structure of OCP immersed in the medium using Fourier transform infrared spectroscopy, and the degree of supersaturation of the medium were determined. Bone regeneration and OCP degradation were enhanced the most by 1.0 μg of OCP/SDF-1 at 2 weeks after implantation by CT analysis and increasing CXCR4-positive, osteocalcin-positive, and TRAP-positive cells accumulation around the OCP. MSC migration increased until 48 h in the following order: SDF-1 only, CDHA/SDF-1, and OCP/SDF-1, with the greatest effect with 1.0 μg of SDF-1 than from OCP. CDHA promoted a greater release than OCP at 48 h. The physicochemical analyses indicated that SDF-1 interacted with OCP through Freundlich-type adsorption and that the adsorption controlled SDF-1 release from OCP during the hydrolysis into CDHA. Therefore, leveraging its molecular affinity for the OCP surface, OCP/SDF-1 facilitates MSC migration and enhances bone formation by ensuring the controlled, sustained release of SDF-1 from OCP.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-025-06872-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06872-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated whether octacalcium phosphate (OCP) enhances bone regeneration through its synergistic effect with stromal-derived factor-1 (SDF-1). Recombinant SDF-1 (0.5–5.0 μg) was combined with OCP granules through lyophilization. OCP/SDF-1 granules were implanted into a rat femoral standardized defect for 2 and 4 weeks and subjected to histomorphometry, C-X-C motif chemokine receptor 4 (CXCR4) and osteocalcin immunohistomorphometry, and tartrate-resistant acid phosphatase (TRAP) staining. Calcium-deficient hydroxyapatite (CDHA) was used as a control for in vitro analyses. Mesenchymal stem cell (MSC) migration was estimated using a Transwell system with OCP/SDF-1. SDF-1 release from OCP/SDF-1 into the supernatant was determined without cells. SDF-1 adsorption in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer onto OCP, the chemical structure of OCP immersed in the medium using Fourier transform infrared spectroscopy, and the degree of supersaturation of the medium were determined. Bone regeneration and OCP degradation were enhanced the most by 1.0 μg of OCP/SDF-1 at 2 weeks after implantation by CT analysis and increasing CXCR4-positive, osteocalcin-positive, and TRAP-positive cells accumulation around the OCP. MSC migration increased until 48 h in the following order: SDF-1 only, CDHA/SDF-1, and OCP/SDF-1, with the greatest effect with 1.0 μg of SDF-1 than from OCP. CDHA promoted a greater release than OCP at 48 h. The physicochemical analyses indicated that SDF-1 interacted with OCP through Freundlich-type adsorption and that the adsorption controlled SDF-1 release from OCP during the hydrolysis into CDHA. Therefore, leveraging its molecular affinity for the OCP surface, OCP/SDF-1 facilitates MSC migration and enhances bone formation by ensuring the controlled, sustained release of SDF-1 from OCP.

Graphical Abstract

八磷酸钙在大鼠股骨标准化缺损中基质衍生因子-1的吸附增强成骨能力
本研究探讨磷酸八钙(OCP)是否通过与基质衍生因子-1 (SDF-1)的协同作用促进骨再生。重组SDF-1 (0.5 ~ 5.0 μg)与OCP颗粒冻干联合。将OCP/SDF-1颗粒植入大鼠股骨标准化缺损2周和4周,进行组织形态测定、C-X-C基序趋化因子受体4 (CXCR4)和骨钙素免疫组织形态测定、抗酒石酸酸性磷酸酶(TRAP)染色。以缺钙羟基磷灰石(CDHA)为对照进行体外分析。使用带有OCP/SDF-1的Transwell系统估计间充质干细胞(MSC)的迁移。在没有细胞的情况下,测定OCP/SDF-1向上清液中的SDF-1释放量。4-(2-羟乙基)-1-哌嗪乙磺酸缓冲液中SDF-1吸附在OCP上,利用傅里叶变换红外光谱法测定OCP浸入介质的化学结构,并测定介质的过饱和程度。CT分析显示,植入后2周,1.0 μg OCP/SDF-1能显著促进骨再生和OCP降解,增加OCP周围cxcr4阳性、骨钙素阳性和trap阳性细胞的聚集。至48 h, MSC的迁移顺序依次为:单用SDF-1、CDHA/SDF-1、OCP/SDF-1,其中1.0 μg的SDF-1作用最大。在48 h时,CDHA比OCP促进更大的释放。理化分析表明,SDF-1通过freundlich型吸附与OCP相互作用,吸附控制了OCP水解成CDHA过程中SDF-1的释放。因此,利用其对OCP表面的分子亲和力,OCP/SDF-1通过确保OCP中SDF-1的可控、持续释放,促进MSC迁移并促进骨形成。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信