Francesca Forti, Cristiana Cesari, Marco Bortoluzzi, Cristina Femoni, Tiziana Funaioli, Maria Carmela Iapalucci, Stefano Zacchini
{"title":"Heterometallic Ru–Ir Hydride Carbonyl Clusters","authors":"Francesca Forti, Cristiana Cesari, Marco Bortoluzzi, Cristina Femoni, Tiziana Funaioli, Maria Carmela Iapalucci, Stefano Zacchini","doi":"10.1007/s10876-024-02723-9","DOIUrl":"10.1007/s10876-024-02723-9","url":null,"abstract":"<div><p>[NEt<sub>4</sub>][Ru<sub>3</sub>(µ-H)(µ-CO)(CO)<sub>10</sub>] (<b>1</b>) reacts with [{Ir(µ-Cl)(cod)}<sub>2</sub>] in a 1 : 0.5 molar ratio under H<sub>2</sub> atmosphere affording the previously reported [NEt<sub>4</sub>][Ru<sub>3</sub>Ir(µ-H)<sub>2</sub>(µ-CO)<sub>3</sub>(CO)<sub>9</sub>] (<b>2</b>). Performing the reaction under N<sub>2</sub> atmosphere with a 1 : 1 molar ratio of the reagents results in the new species [NEt<sub>4</sub>][Ru<sub>3–x</sub>Ir<sub>2+x</sub>(μ-H)<sub>1–x</sub>(µ<sub>3-</sub>CO)(µ-CO)<sub>3</sub>(CO)<sub>8</sub>(cod)] (x = 0.11) (<b>3</b>), whereas [Ru<sub>3−x</sub>Ir<sub>2+x</sub>(µ-H)<sub>2–x</sub>(µ-CO)<sub>4</sub>(CO)<sub>6</sub>(cod)<sub>2</sub>] (x = 0.5 and 0.77) (<b>4</b>) is obtained by further increasing the amount of [{Ir(µ-Cl)(cod)}<sub>2</sub>]. In particular, compound <b>4</b> with x = 0.5 has been obtained with a 1:1.25 molar ratio of the reagents, whereas <b>4</b> with x = 0.77 is formed increasing the stoichiometry to 1:1.5. Reaction of <b>1</b> and [{Ir(µ-Cl)(cod)}<sub>2</sub>] under CO atmosphere affords [NEt<sub>4</sub>]<sub>2</sub>[Ru<sub>4</sub>Ir<sub>2</sub>(µ-CO)<sub>5</sub>(CO)<sub>12</sub>] (<b>5</b>) (molar ratio of the reagents 1:0.7). Syntheses of <b>2-5</b> are very sensitive to the experimental conditions, and optimized procedures in order to obtain each of these compounds in good yield and high purity have been identified. Slight variations of the experimental conditions lead to lower yield and traces of side-products are formed, among which [NEt<sub>4</sub>][Ru<sub>3</sub>Ir(µ-H)<sub>2</sub>(µ-CO)<sub>3</sub>(CO)<sub>7</sub>(cod)] (<b>6</b>), [NEt<sub>4</sub>][Ru<sub>3</sub>Ir(µ-H)(µ-Cl)(µ-CO)<sub>3</sub>(CO)<sub>9</sub>] (<b>7</b>), [NEt<sub>4</sub>]<sub>3</sub>[Ru<sub>2</sub>Ir<sub>2</sub>(µ<sub>3</sub>-H)(µ-CO)<sub>3</sub>(CO)<sub>9</sub>]Cl<sub>2</sub> (<b>8</b>) and [NEt<sub>4</sub>]<sub>2</sub>[Ru<sub>4</sub>(µ<sub>4</sub>-O)(µ-Cl)<sub>4</sub>(µ-CO)<sub>2</sub>(CO)<sub>8</sub>] (<b>9</b>) have been identified by single-crystal X-ray diffraction (SC-XRD). All the main products <b>2</b>-<b>5</b> have been structurally characterized by SC-XRD and further investigated by IR and <sup>1</sup>H NMR spectroscopy in solution. Hydride locations have been elucidated by computational methods.</p><h3>Graphical Abstract</h3><p>Homoleptic and heteroleptic heterometallic Ru-Ir hydride carbonyl clusters have been obtained from [NEt4][Ru3(µ-H)(µ-CO)(CO)10] and [Ir(COD)Cl]2 under different experimental conditions.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jasra Gul, Abdul Jabbar, Samina Perveen, Asia Naz Awan, Muhammad Raza Shah
{"title":"Development of Folic Acid Functionalized Carbon Nanotubes for Efficient Delivery of Curcumin and Quercetin Against Pathogenic Bacteria","authors":"Jasra Gul, Abdul Jabbar, Samina Perveen, Asia Naz Awan, Muhammad Raza Shah","doi":"10.1007/s10876-024-02725-7","DOIUrl":"10.1007/s10876-024-02725-7","url":null,"abstract":"<div><p>Drug-resistant bacteria pose an alarming risk to public health globally. Specifically, infections caused by multidrug-resistant (MDR) Gram-positive bacteria (e.g., <i>Staphylococcus aureus</i>) are an increasing global health concerns. Herein, we report the first comparative evaluation of folic acid functionalized carbon nanotubes (FA-OMC) loaded with curcumin and quercetin to enhance their efficacies against gram positive MDR <i>S. aureus</i> and <i>E. coli</i>. The carbon nanotubes were oxidized and underwent successive carbodimide coupling and passive drug entrapments to achieve the drug loaded nanocomposites, which were further characterized with TGA, PXRD, SEM, AFM, FTIR, and DLS. The drug release kinetics as well as the cytotoxic evaluation and antibacterial studies were also evaluated. The results revealed that our drug loaded nanocomposites showed high drug entrapment, wrecked layered in morphology, nano range in size, possess negative zeta potential, low PDI values, higher thermal stability and partial crystallinity. FTIR analysis of the drug loaded nanocomposites shows the possible interaction between drug and nanotubes. The developed formulations (Cur-FA-OMC and Que-FA-OMC) revealed extended drug release and higher biocompatibility against tested NIH/3T3 cells. The antimicrobial assessment of drug loaded nanoparticles against gram positive bacteria showed significant bactericidal efficacy as compared to drug alone and their morphological disruption were also confirmed by AFM microscopy. The outcomes of our study suggests that our developed drug loaded nanoformulations could be a viable option for reversing MDR bacteria. More research needed in future to consolidate these findings.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irmaizatussyehdany Buniyamin, Noor Asnida Asli, Rabiatuladawiyah Md Akhir, Salifairus Mohammad Jafar, Kevin Alvin Eswar, Mohd Khairil Adzhar Mahmood, Mohd Yusri Idorus, Muhammad Salleh Shamsudin, A. F. M. Motiur Rahman, Mohamad Rusop Mahmood, Zuraida Khusaimi
{"title":"Biofabricated SnO2 Nanoparticles Derived from Leaves Extract of Morinda citrifolia and Pandanus amaryllifolius for Photocatalytic Degradation","authors":"Irmaizatussyehdany Buniyamin, Noor Asnida Asli, Rabiatuladawiyah Md Akhir, Salifairus Mohammad Jafar, Kevin Alvin Eswar, Mohd Khairil Adzhar Mahmood, Mohd Yusri Idorus, Muhammad Salleh Shamsudin, A. F. M. Motiur Rahman, Mohamad Rusop Mahmood, Zuraida Khusaimi","doi":"10.1007/s10876-024-02738-2","DOIUrl":"10.1007/s10876-024-02738-2","url":null,"abstract":"<div><p>Urgent remediation is needed to degrade the low-biodegradability dye molecules in dye-polluted water from textile industries, as this contamination has been recognized as a serious environmental issue, causing a range of harmful effects on both human health and ecosystems. In this milieu, the present study investigates the biofabrication of tin oxide nanoparticles (SnO<sub>2</sub> NPs) using leaves extract from <i>Morinda citrifolia</i> and <i>Pandanus amaryllifolius</i> for the degradation of methylene blue (MB), benefaction an alternative solution to the issue of dye-polluted water. The synthesis method integrates tin chloride pentahydrate with the leaves extract, followed by calcination. Comprehensive characterization via FTIR, XRD, FESEM, EDX, HRTEM, and UV-Vis spectroscopy confirmed the successful formation of SnO<sub>2</sub> NPs, revealing distinct morphological and crystalline properties. Photocatalytic tests demonstrated that SnO<sub>2</sub> NPs derived from <i>M. citrifolia</i> achieved a superior degradation rate of 97%, compared to 80% from <i>P. amaryllifolius</i>, with optimal activity under neutral pH. While radical scavenger experiments identified electrons as the primary active species to accelerate the degradation and reusability tests indicated a gradual decline in efficiency over five cycles, demonstrating its stability. These findings underscore the superiority of biofabricated SnO<sub>2</sub> NPs as a sustainable and efficient photocatalyst using these two plants, compared to other plant templates, in which pronounce promising avenues for environmental conservation and resource management.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osama H. Abuzeyad, Ahmed M. El-Khawaga, Hesham Tantawy, Mohamed Gobara, Mohamed A. Elsayed
{"title":"Reduced Graphene Oxide Loaded with ZCF Magnetic Nanoparticles as a Promising Photocatalyst and Antibacterial Agent","authors":"Osama H. Abuzeyad, Ahmed M. El-Khawaga, Hesham Tantawy, Mohamed Gobara, Mohamed A. Elsayed","doi":"10.1007/s10876-024-02718-6","DOIUrl":"10.1007/s10876-024-02718-6","url":null,"abstract":"<div><p>Due to waste, pollution, and unequal distribution of the world’s finite freshwater resources, there is currently a problem of water scarcity. Therefore, developing novel, affordable, and efficient techniques for water purification is essential. Here, the photo-assisted degradation of Methyl Orange dye (MO) under visible light and UV was achieved by using reduced graphene oxide (RGO) photocatalyst loaded with Zn<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> (ZCF) called MRGO 20. Furthermore, all prepared samples were characterized by X-ray diffraction (XRD), fourier transformation infrared (FTIR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Raman analysis. After 40 minutes, the high photocatalytic efficacy effectively eliminated about 96 % of the 10 ppm MO using 20 mg of MRGO 20 NPs at pH 5 under Visible light irradiation. From the results, MRGO 20 demonstrated good performance stability after five cycles of photocatalytic degradation of MO dye. The shown performance of the generated samples in both visible and UV light may motivate further investigation into more potent photocatalysts for water filtering. MRGO 20 NPs nanocomposite displayed great activity against Gram-negative (<i>E. coli</i>) bacteria with a zone of inhibition (ZOI) mm value of 24.0 mm, and high biofilm inhibition of 94.3%. The produced samples’ observed efficacy in both UV and visible light may encourage continued research into more effective photocatalysts for the filtration of water and for biological applications.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10876-024-02718-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Hemdan, Ahmed. H. Ragab, Salah S. Elyan, Mostafa A. Taher, Mahmoud F. Mubarak
{"title":"Eco-friendly Activated Carbon Thin Film-Zeolitic Imidazolate Framework-8 (ACTF@ZIF-8) Nanocomposite for Efficient Methylene Blue Removal: Synthesis, Characterization, and Adsorption Performance","authors":"Mohamed Hemdan, Ahmed. H. Ragab, Salah S. Elyan, Mostafa A. Taher, Mahmoud F. Mubarak","doi":"10.1007/s10876-024-02730-w","DOIUrl":"10.1007/s10876-024-02730-w","url":null,"abstract":"<div><p>The extensive use of synthetic dyes in the textile industry has resulted in severe water contamination, with methylene blue (MB) being a prevalent pollutant. This study presents the development of an eco-friendly nanocomposite, Activated Carbon Thin Film-Zeolitic Imidazolate Framework-8 (ACTF@ZIF-8), synthesized through an in-situ growth method for efficient MB removal from aqueous solutions. The composite's structural and physicochemical properties were thoroughly characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HR-TEM), and Brunauer-Emmett-Teller (BET) surface area analysis. The nanocomposite exhibited a high specific surface area of 384.4 m<sup>2</sup>/g and an adsorption capacity of 156.83 mg/g, achieving a removal efficiency of 98.8%. Kinetic studies indicated that MB adsorption followed a pseudo-second-order model (R<sup>2</sup> = 0.9994), suggesting chemisorption as the primary mechanism. The adsorption isotherms conformed to the Freundlich model (R<sup>2</sup> = 0.999), indicating multilayer adsorption on a heterogeneous surface. Thermodynamic analysis indicated an endothermic process, characterized by a positive enthalpy change and an increase in entropy. The process was confirmed to be spontaneous, as demonstrated by negative Gibbs free energy values. The composite also demonstrated high reusability, maintaining efficiency across multiple cycles. These findings position ACTF@ZIF-8 as a promising material for sustainable wastewater treatment, aligning with advancements in nanomaterial-based environmental remediation.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of MIPs@H2S Nanoparticle Adsorbent for the Specific Adsorption of Hazardous Hydrogen Sulfide Gas: Approach to Optimization","authors":"Rohadin Moradirad, Hassan Asilian Mahabadi, Seyed Jamaleddin Shahtaheri, Alimorad Rashidi","doi":"10.1007/s10876-024-02668-z","DOIUrl":"10.1007/s10876-024-02668-z","url":null,"abstract":"<div><p>Hydrogen sulfide (H<sub>2</sub>S) is toxic and corrosive at high concentrations and pressures. Adsorption methods are suitable due to their low energy consumption, low cost, and high efficiency. Synthesis and optimization of structural and operational parameters of specific molecularly imprinted polymers (MIPs) Nano adsorbents for H2S gas adsorption carried out using response surface design methodology. The optimal polymerization conditions of MIPs included 16 experiments. The amounts of template molecules (1–5 mmol), cross-linker (5–20 mmol), functional monomer (2–12mmol), porogen solution (acetonitrile/ethyl acetate v/v 1–9%), elution solution (acetic acid/methanol 20/80) and initiator (25–100 mg) were optimized using Taguchi method of experimental design. We used the SRK equation of state for the molar mass of the gas on a fixed bed with a height of 400 mm and an inner diameter of 10 mm. Finally, physical properties were determined using FTIR, XRD, FE-SEM, and BET. Statistical analysis showed that the signal-to-noise ratio between the template molecule, cross-linker, and functional monomer was 2:15:2.5, and the optimal adsorption value occurred at a volume ratio of acetonitrile/ethyl acetate of 1:9 and initiator of 75. In this study, the surface is MIPs@H<sub>2</sub>S. Variance analysis showed that all Nano-adsorbents followed a second-order model, temperature and adsorbent dosage were the most critical variables in the process, and the equilibrium adsorption of all Nano-adsorbents followed the Langmuir isotherm and second-order synthesis model. The regeneration study highlighted that the Nano-adsorbent is a promising adsorbent with high reversibility and stability for H<sub>2</sub>S gas. Finally, the selectivity results of specific adsorption of H<sub>2</sub>S gas by CO<sub>2</sub>/H<sub>2</sub>S/CH<sub>4</sub> gas mixture of MIPs@H<sub>2</sub>S were significantly higher than that of Non-imprinted polymers (NIPs) Nano adsorbent.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3113 - 3130"},"PeriodicalIF":2.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ammar Adil Hussein, Ali M.A. Abdul Amir AL-Mokaram, Qabas Naji Rashid
{"title":"State-of-the-art of Synthesized PANI/NiCo2O4/CeO2 Nanocomposites by One-Step Polymerization for Use in Photodetectors","authors":"Ammar Adil Hussein, Ali M.A. Abdul Amir AL-Mokaram, Qabas Naji Rashid","doi":"10.1007/s10876-024-02715-9","DOIUrl":"10.1007/s10876-024-02715-9","url":null,"abstract":"<div><p>A novel PANI/NiCO<sub>2</sub>O<sub>4</sub>/CeO<sub>2</sub> nanocomposite was prepared using the binary Nano metal oxide NiCo<sub>2</sub>O<sub>4</sub>/CeO<sub>2</sub> with aniline and ammonium persulfate (APS) via a one-step polymerization and drop throwing system. The nanocomposite was explored by X-ray diffraction (XRD) analysis confirmed the successful integration of nanoparticles into PANI. UV-visible spectroscopy revealed absorbance peaks characteristic of PANI combined with nano metal oxides. Raman spectroscopy further verified the nanocomposite’s structure, with peaks at 415, 517, 575, and 640 cm<sup>− 1</sup> attributed to CeO<sub>2</sub> and NiCo<sub>2</sub>O<sub>4</sub> nanoparticles within the PANI matrix. Field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX) analyses of the doped PANI showed nanostructures ranging from 18.40 to 23.28 nm. Photodetection properties such as responsivity (R<sub>λ</sub>), detectivity (D*), and external quantum efficiency (QE) of porous silicon nanocomposites were assessed using the drop-casting method. The incorporation of Ag/PANI-NiCo<sub>2</sub>O<sub>4</sub>-CeO<sub>2</sub>/PSi/Si/Ag enhanced the ideality factor of porous silicon. At wavelengths of 350–900 nm, the values of R<sub>λ</sub>, D*, and QE were measured at 0.37 A/W, 5.3 × 10^12 cmHz^1/2/W, and 110%, respectively.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3167 - 3180"},"PeriodicalIF":2.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bilal Khaled, Chaima Salmi, Iman Kir, Hamdi Ali Mohammed, Salah Eddine Laouini, Abderrhmane Bouafia, Fahad Alharthi, Johar Amin Ahmed Abdullah, Khansaa Al-Essa
{"title":"Enhanced Elimination of Dyes from Aqueous Solution and Antioxidant Activity Using Ascorbic Acid-Functionalized Iron Oxide Nanocomposites","authors":"Bilal Khaled, Chaima Salmi, Iman Kir, Hamdi Ali Mohammed, Salah Eddine Laouini, Abderrhmane Bouafia, Fahad Alharthi, Johar Amin Ahmed Abdullah, Khansaa Al-Essa","doi":"10.1007/s10876-024-02712-y","DOIUrl":"10.1007/s10876-024-02712-y","url":null,"abstract":"<div><p>This study presents the synthesis and characterization of iron oxide nanocomposites (Fe₃O₄/Fe₂O₃ NC) functionalized with ascorbic acid (Fe₃O₄/Fe₂O₃@AA NC) for enhanced photocatalytic and antioxidant activities. The nanocomposites were synthesized using a modified co-precipitation method and characterized by UV-visible spectroscopy, FTIR, XRD, and SEM. The photocatalytic degradation of Brilliant Cresyl Blue (BCB) and amoxicillin (AMX) under sunlight irradiation was evaluated. Results showed a remarkable degradation efficiency of 99.2% for BCB and 99.1% for AMX using Fe₃O₄/Fe₂O₃@AA NC, compared to 97% and 95% with Fe₃O₄/Fe₂O₃ NC. The rate constants for the degradation of BCB were 0.041 min⁻<sup>1</sup> for Fe₃O₄/Fe₂O₃@AA NC and 0.031 min⁻<sup>1</sup> for Fe₃O₄/Fe₂O₃ NC, while for AMX, they were 0.035 min⁻<sup>1</sup> and 0.025 min⁻<sup>1</sup>, respectively. Additionally, the antioxidant activity of Fe₃O₄/Fe₂O₃@AA NC was significantly higher, ranging from 45% to 95.25%, compared to 41.8% to 79.6% for Fe₃O₄/Fe₂O₃ NC. These findings suggest that ascorbic acid functionalization significantly enhances the photocatalytic and antioxidant properties of iron oxide nanocomposites.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3025 - 3044"},"PeriodicalIF":2.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdeldjalil Laouini, Abderrhmane Bouafia, Salah Eddine Laouini, Hamdi Ali Mohammed, Mohammed Laid Tedjani, Fahad Alharthi, Johar Amin Ahmed Abdullah
{"title":"Boosted Antioxidant and Photocatalytic Power: Reusable PEG-Coated Iron Oxide Nanocomposites for Effective Cephalexin and BCB Dye Degradation","authors":"Abdeldjalil Laouini, Abderrhmane Bouafia, Salah Eddine Laouini, Hamdi Ali Mohammed, Mohammed Laid Tedjani, Fahad Alharthi, Johar Amin Ahmed Abdullah","doi":"10.1007/s10876-024-02716-8","DOIUrl":"10.1007/s10876-024-02716-8","url":null,"abstract":"<div><p>In this study, α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> nanocomposite (NC) coated with polyethylene glycol were synthesized via hydrothermal synthesis, achieving uniform particle formation and controlled crystallinity. Characterization using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX) confirmed the physical attributes and homogeneity of the nanocomposite. Polyethylene glycol-coated α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> showed a reduced crystalline size of 19.13 nm compared to 22.93 nm for uncoated nanoparticles. Optical band gap measurements revealed values of 4.64 electron volts for polyethylene glycol, 1.98 electron volts for α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC, and 3.18 electron volts for α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@polyethylene glycol nanocomposites, indicating both insulating and semiconducting behaviors. The photocatalytic performance of the polyethylene glycol-coated α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> was demonstrated by a 99.4% degradation of Brilliant Cresyl Blue (BCB) dye within 120 minutes at a concentration of 5 milligrams per milliliter, with a pseudo-first-order rate constant of 0.02047 per minute. Furthermore, the nanocomposites exhibited strong recyclability and reusability, making them viable candidates for environmental remediation. The study underscores the potential of α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC in applications such as water treatment and antioxidant therapies.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3131 - 3151"},"PeriodicalIF":2.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unravelling the Growth Mechanism of Nanotorous ZrO2-NiO Binary Composite and its Electrochemical Study for Supercapacitor Application","authors":"Kumar Abhisek, Shashikant Shivaji Vhatkar, Helen Treasa Mathew, Dipti Sakshi Srivastava, Ramesh Oraon","doi":"10.1007/s10876-024-02711-z","DOIUrl":"10.1007/s10876-024-02711-z","url":null,"abstract":"<div><p>Present work reports on the synthesis of NiO-incorporated nanotorous ZrO<sub>2</sub> synthesized by facile co-precipitation method for supercapacitor application. The as-synthesized composite was characterised using FTIR and XRD confirming the successful synthesis of ZrO<sub>2</sub>-NiO composite (ZNC). FESEM analysis also revealed morphology transition from nanoclusters of tiny ZrO<sub>2</sub> particles and stacked flakes of NiO to self-assembled nanotorus ZNC. Electrochemical analyses (like CV, GCD, EIS) also revealed improved electrochemical behaviour of ZrO<sub>2</sub> whose specific capacitance increased from 87.77 F/g to 251 F/g in ZNC at 1 A/g. This could be attributed to the synergistic effect of nanotorous morphology in the presence of NiO. These observations were well complemented by a reduced band gap (~ 2.96 eV) and lower charge transfer and solution resistance. A mechanistic insight was also proposed for a deeper understanding of the development of torous structured material. This work provides a closer look into how NiO-driven torous morphology of ZrO<sub>2</sub>-NiO composite has improved the electrochemical performance of ZrO<sub>2</sub>.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3045 - 3063"},"PeriodicalIF":2.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}