Journal of Cluster Science最新文献

筛选
英文 中文
Biogenic Flat Gold Nanoparticles and Their Photoluminescence Response
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-024-02759-x
A. Del Moral-G, Alfredo Saavedra-Molina, Mario A. Gómez-Hurtado, S. Gálvez-Barbosa, R. Perez, G. Rosas
{"title":"Biogenic Flat Gold Nanoparticles and Their Photoluminescence Response","authors":"A. Del Moral-G,&nbsp;Alfredo Saavedra-Molina,&nbsp;Mario A. Gómez-Hurtado,&nbsp;S. Gálvez-Barbosa,&nbsp;R. Perez,&nbsp;G. Rosas","doi":"10.1007/s10876-024-02759-x","DOIUrl":"10.1007/s10876-024-02759-x","url":null,"abstract":"<div><p>Many studies have reported the synthesis of gold nanoparticles (AuNPs) with various shapes using plant extracts in a single step. However, there is limited research on controlling the morphology of AuNPs growing on specific crystal planes. In this study, planar AuNPs were synthesized at room temperature using the extract of the <i>Taraxacum Officinale</i> plant while avoiding exposure to natural light. Various concentrations of plant extract and precursor salt were tested during the synthesis process. The plant extract’s metabolites involved in the reduction and stabilization of the NPs were identified using nuclear magnetic resonance (<sup>1</sup>H-NMR) and Fourier transform infrared spectroscopy (FT-IR). The fluorescence spectroscopy of the AuNPs was also evaluated. Structural and morphological analysis of the samples was performed using scanning and transmission electron microscopy (SEM, TEM). The X-ray diffraction (XRD) with the Rietveld method characterized the crystallite size and nanoparticle orientation. SEM and TEM results showed that increasing the plant extract concentration led to NPs with variable shapes due to an abundance of biomolecules in the extract. Also, higher precursor salt concentrations resulted in irregular planar NPs overlapping at specific crystallographic planes, generating a large surface area. XRD confirmed the AuNPs’ Face-Centered Cubic (FCC) lattice structure and verified the planar orientation at the {111} planes. <sup>1</sup>H-NMR and FT-IR spectroscopy revealed that the metabolites in the plant extract mainly consisted of reducing sugars. The most significant finding of this study was that these planar NPs oriented in the {111} planes exhibited fluorescence close to 300 (u.a.), suggesting their potential use in detecting cancer cell lines, which could have significant implications in biomedical diagnostics.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10876-024-02759-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Polyethyleneimine-chitosan Nanoparticles Encapsulating Urolithin B: A Potential Nanotherapeutic Approach for Diabetic Nephropathy
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-024-02753-3
Jose Prakash Dharmian, S. P. Angelin Claret, Prakash Ramakrishnan, Pavazhaviji Pazhani, Nagamalai Vasimalai, Somasundaram Arumugam
{"title":"Novel Polyethyleneimine-chitosan Nanoparticles Encapsulating Urolithin B: A Potential Nanotherapeutic Approach for Diabetic Nephropathy","authors":"Jose Prakash Dharmian,&nbsp;S. P. Angelin Claret,&nbsp;Prakash Ramakrishnan,&nbsp;Pavazhaviji Pazhani,&nbsp;Nagamalai Vasimalai,&nbsp;Somasundaram Arumugam","doi":"10.1007/s10876-024-02753-3","DOIUrl":"10.1007/s10876-024-02753-3","url":null,"abstract":"<div><p>This work was aimed at synthesizing and characterizing urolithin B-encapsulated polyethyleneimine (PEI)-conjugated chitosan nanoparticles and their probable therapeutic use for diabetes-induced kidney damage. Nanoparticles with a specific formulation were prepared using the optimized formulation method, and various analyses were conducted on their properties. A completion of the conjugation between PEI and chitosan was identified through nuclear magnetic resonance (NMR) spectroscopy. The percent Encapsulation Efficiency (EE) along with Loading Efficiency (LE) were also determined and optimized to have the maximum encapsulation of the drug. The improved formulation of UB-PEI-CHI-NPs, with a particle size of 150 nm and a zeta potential of + 20.2 mV, achieved a percentage entrapment efficiency of 85.4%. Nanoparticle concentration ranging from 10 to 100 µg/mL resulted in cell survival rates above 85%. The in vitro drug release study revealed that urolithin B is released gradually over a longer duration. The MTT assay further ascertained the biocompatibility of the formulation and the cytotoxicity of the formulation in a dose-dependent manner. These outcomes indicate that urolithin-loaded PEI-conjugated chitosan nanoparticles might be employed as an effective therapeutic approach for the treatment of diabetic nephropathy, and hence, further in vivo experiments are required to test the prospects of the formulated nanoparticles.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the Catalytic Activity of Fe3O4 Nanoparticles for KNO3 Decomposition via Surface Functionalization
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-024-02758-y
Yuvaraja Dibdalli, Héctor Pérez, Alejandro López-Telgie, Nelson Vejar, Desmond MacLeod-Carey, José Gaete, Gabriel Abarca, Cesar Morales-Verdejo
{"title":"Tailoring the Catalytic Activity of Fe3O4 Nanoparticles for KNO3 Decomposition via Surface Functionalization","authors":"Yuvaraja Dibdalli,&nbsp;Héctor Pérez,&nbsp;Alejandro López-Telgie,&nbsp;Nelson Vejar,&nbsp;Desmond MacLeod-Carey,&nbsp;José Gaete,&nbsp;Gabriel Abarca,&nbsp;Cesar Morales-Verdejo","doi":"10.1007/s10876-024-02758-y","DOIUrl":"10.1007/s10876-024-02758-y","url":null,"abstract":"<div><p>This study investigates the synthesis, characterization, and catalytic activity of functionalized iron oxide nanoparticles for the thermal decomposition of potassium nitrate (KNO<sub>3</sub>). The iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NP<sub>s</sub>) were synthesized using a co-precipitation method and then functionalized with 11-Bromoundecanoic (Fe₃O₄@Br) and 11-Aminoundecanoic acids (Fe₃O₄@NH₂) by chemical route. The functionalized nanoparticles were characterized using Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry (VSM). The characterization results revealed that the nanoparticles have a uniform size of approximately 8.3 nm, exhibit superparamagnetic behavior, and are successfully functionalized. To compare short and long-chain ligands, we included our previously reported quaternary (Fe₃O₄@NR<sub>4</sub><sup>+</sup>) and tertiary (Fe<sub>3</sub>O<sub>4</sub>@NR<sub>3</sub>) amine-functionalized magnetic catalysts in the catalytic studies. Among the different functionalized nanoparticles, Fe<sub>3</sub>O<sub>4</sub>@NR<sub>3</sub> exhibited the most pronounced catalytic activity, significantly reducing the decomposition temperature (DT) of KNO<sub>3</sub> to 683.2 °C compared to the other nanoparticles. This enhanced catalytic activity is attributed to the specific interaction between the Fe<sub>3</sub>O<sub>4</sub>@NR<sub>3</sub> surface and KNO<sub>3</sub> molecules. The activation energies (<i>E</i><sub>a</sub>) for the thermal decomposition of KNO<sub>3</sub> were calculated using the ASTM e628 method, confirming the decrease in activation energy for the Fe<sub>3</sub>O<sub>4</sub>@NH<sub>2</sub> + KNO<sub>3</sub> mixture compared to pure KNO<sub>3</sub>. These findings demonstrate the potential of tailored surface functionalization to improve the catalytic performance of Fe<sub>3</sub>O<sub>4</sub> nanoparticles for KNO<sub>3</sub> decomposition, which has potential applications in various fields such as propellants, explosives, and pyrotechnics.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Determination of Capsaicin at A Multiwalled Carbon Nanotubes/CuO Nanocomposite Modified Platinum Electrode
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-025-02767-5
Onkarabile G. Pooe, Saheed E. Elugoke, Gloria E. Uwaya, Omolola E. Fayemi
{"title":"Electrochemical Determination of Capsaicin at A Multiwalled Carbon Nanotubes/CuO Nanocomposite Modified Platinum Electrode","authors":"Onkarabile G. Pooe,&nbsp;Saheed E. Elugoke,&nbsp;Gloria E. Uwaya,&nbsp;Omolola E. Fayemi","doi":"10.1007/s10876-025-02767-5","DOIUrl":"10.1007/s10876-025-02767-5","url":null,"abstract":"<div><p>Herein, electrochemical detection of capsaicin (CAP) in sauce and rub samples at a Pt electrode modified with copper oxide nanoparticles (CuO NPs) incorporated with functionalized multi-walled carbon nanotubes (fMWCNTs) was reported. The spectroscopic and microscopic characterization of CuO NPs, fMWCNTs and CuO/fMWCNTs nanocomposite with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) spectroscopy and Fourier-transform infrared spectroscopy (FT-IR) spectroscopy confirmed that CuO/fMWCNTs was prepared from the nanomaterials. Electrochemical characterization of the bare Pt, the fMWCNTs-modified Pt, the CuO NP-modified Pt (Pt-CuO) and the CuO/fMWCNTs composite modified Pt (Pt-CuO/fMWCNTs) electrodes revealed that the Pt-CuO/fMWCNTs exhibited the best electron transfer capabilities. The limit of detection (LOD) and the linear range of CAP at Pt-CuO/fMWCNTs were 0.0881 and 0.357–2.73 µM, respectively. The proposed sensor offered outstanding percentage recovery of 106 and 102% when applied to the electroanalysis of CAP in spiked sauce and rub samples, respectively. Pt-CuO/fMWCNTs also retained about 88% of its initial current response when subjected to 25 cyclic voltammetry (CV) scans in the presence of CAP.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10876-025-02767-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic Degradation of Methylene Blue Dye by Nickel Sulphide Nanoparticles Derived from Thiosemicarbazone Complexes as Single Source Precursors
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-024-02755-1
Jocelyn N. Kuate, Adrien Y. Pamen, Awawou G. Paboudam, Giscard Doungmo, Mariappan Mariappan, Monisha Arumugam, Rohan K. Kunkalekar, Viorel Cîrcu, Marilena Ferbinteanu, Sunder N. Dhuri, Peter T. Ndifon
{"title":"Photocatalytic Degradation of Methylene Blue Dye by Nickel Sulphide Nanoparticles Derived from Thiosemicarbazone Complexes as Single Source Precursors","authors":"Jocelyn N. Kuate,&nbsp;Adrien Y. Pamen,&nbsp;Awawou G. Paboudam,&nbsp;Giscard Doungmo,&nbsp;Mariappan Mariappan,&nbsp;Monisha Arumugam,&nbsp;Rohan K. Kunkalekar,&nbsp;Viorel Cîrcu,&nbsp;Marilena Ferbinteanu,&nbsp;Sunder N. Dhuri,&nbsp;Peter T. Ndifon","doi":"10.1007/s10876-024-02755-1","DOIUrl":"10.1007/s10876-024-02755-1","url":null,"abstract":"<div><p>Nickel sulphide (NiS) with its low band gap and interesting optical properties, is able to absorb visible light, thus possess appreciable photocatalytic properties. However, their synthesis by green and sustainable methods with controlled morphologies, sizes and phases for specific applications remains a major challenge. We herein report the green synthesis of olive oil- (OO) and castor oil-(CO) capped Ni<sub>x</sub>S<sub>y</sub> nanoparticles by the thermolysis of [Ni(L)<sub>2</sub>] <b>(1)</b> and [Ni<sub>2</sub>(L)<sub>3</sub>(SCN)].6H<sub>2</sub>O <b>(2)</b> complexes as single source precursors (SSPs) at 190 °C and 230 °C, (L being furan-2-carbaldehyde thiosemicarbazone). The single crystal X-ray structure of compound <b>(1)</b> has been elucidated. The influence of reaction parameters on the structure, morphology, size, optical and photocatalytic properties of the synthesized nanoparticles Has been examined using various techniques. Results of powder X-ray diffraction (p-XRD) reveal a mixture of hexagonal Ni<sub>17</sub>S<sub>18</sub> and orthorhombic Ni<sub>9</sub>S<sub>8</sub> nanomaterials. Energy dispersive X-ray spectroscopy (EDX) confirmed the elemental composition of Ni<sub>x</sub>S<sub>y</sub> nanoparticles. Transmission electron microscopy (TEM) images revealed spherical and fibrous nanoparticles with sizes ranging between 3.0 and 25.3 nm. Optical properties of Ni<sub>x</sub>S<sub>y</sub> nanoparticles. The band gap energies obtained from Tauc plots vary between 2.25 and 2.49 eV and 2.29–2.50 eV for NixSy nanoparticles derived from complex <b>(1)</b> and complex <b>(2)</b> respectively and show considerable blue shift from its bulk value due to quantum size confinement effect. The presence of peaks around 1390 and 1561 cm<sup>-1</sup> in the Raman spectra confirm the formation of olive and castor oil capped nickel sulphide nanoparticles (NPs). These results suggest that crystallinity, size, morphology and optical properties of the synthesized Ni<sub>x</sub>S<sub>y</sub> NPs were affected by thermolysis temperature, capping agent and precursor type. The as-prepared nickel sulphide nanoparticles were used as photocatalysts for the degradation of methylene blue (MB) at a concentration of 10 ppm under UV light irradiation. Nickel sulphide nanoparticles obtained in olive oil at 190 °C using complex <b>(2)</b> as SSP, showed a maximum degradation efficiency of 52.0% after 180 min, suggesting that Ni<sub>x</sub>S<sub>y</sub> nanoparticles can be used as photocatalysts for the degradation of organic pollutants.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cytotoxic Effect of Cobalt Oxide Nanoparticle Conjugated by Menthol on Colorectal Cancer Cell Line and Evaluation of the Expression of CASP8 and FEZF1-AS1
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-024-02757-z
Niloofar Faraji, Nabeel Rahi Mashkoor, Alireza Emamifar, Fatemeh Ghamarsoorat, Zahra Pourahmad Ghalehjoughi, Fahimeh Abedini Bajgiran, Parastoo Vakili Nezami, Mohammad Hedayati, Ali Salehzadeh
{"title":"The Cytotoxic Effect of Cobalt Oxide Nanoparticle Conjugated by Menthol on Colorectal Cancer Cell Line and Evaluation of the Expression of CASP8 and FEZF1-AS1","authors":"Niloofar Faraji,&nbsp;Nabeel Rahi Mashkoor,&nbsp;Alireza Emamifar,&nbsp;Fatemeh Ghamarsoorat,&nbsp;Zahra Pourahmad Ghalehjoughi,&nbsp;Fahimeh Abedini Bajgiran,&nbsp;Parastoo Vakili Nezami,&nbsp;Mohammad Hedayati,&nbsp;Ali Salehzadeh","doi":"10.1007/s10876-024-02757-z","DOIUrl":"10.1007/s10876-024-02757-z","url":null,"abstract":"<div><p>Colorectal cancer (CRC) poses a significant health challenge, driving the search for novel treatments, and nanoparticles have been introduced as a practical component for better patient outcomes. This study explored the cytotoxic effects of cobalt oxide nanoparticles combined with menthol (Co<sub>3</sub>O<sub>4</sub>@Glu-Menthol) on CRC cells by assessing the expression of caspase-8 (<i>CASP8</i>) and <i>FEZF1-AS1</i> genes. Co<sub>3</sub>O<sub>4</sub>@Glu-Menthol nanoparticles were synthesized by mixing cobalt nitrate with sodium hydroxide and were surface functionalized with glucose and menthol coating. Characterization of nanoparticles was assessed using Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), Energy-Dispersive X-ray Spectroscopy (EDS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis/necrosis evaluation via Annexin V/Propidium Iodide assay, and caspase-8 (<i>CASP8</i>) and <i>FEZF1-AS1</i> genes expression by qRT-PCR after RNA extraction of CRC cell line, cDNA synthesis, and primer design from both treated and untreated cells. Also, Hoechst staining was performed to characterize the anticancer mechanism of Co<sub>3</sub>O<sub>4</sub>@Glu-Menthol NPs. The synthesized NPs were spherical, within a 30–60 nm size range, and without impurities. The particles’ DLS size and zeta potential were 175 nm and − 41.1 mV, respectively. MTT assay showed that the IC<sub>50</sub> values of NP were 149 µg/mL and 87 µg/mL for 24 and 48 h, respectively, for CRC cell line and 320 µg/mL for normal cell line. Flow cytometry showed significant differences in apoptosis and necrosis between treated and untreated groups. Gene expression analysis revealed a significant increase in <i>CASP8</i> gene expression (2.4 fold) and a decrease in <i>FEZF1-AS1</i> gene expression (0.4 fold), indicating apoptotic effects (<i>P</i> &lt; 0.001). Also, Caspase 3 activity was significantly increased in treated cells (6.2 fold) (<i>P</i> &lt; 0.05). The study suggested that Co<sub>3</sub>O<sub>4</sub>@Glu-Menthol nanoparticles possess potent anticancer properties against CRC cells, potentially through induction of apoptosis and modulation of gene expression related to apoptosis pathways.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Delivery of Paclitaxel-Coated ZIF-8 Metal-Organic Framework Nanoparticles for Enhanced in Vitro Administration in Liver Cancer Cell Lines
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-024-02739-1
Xinhua Zhao, Xiaoyong Wu, Liqin Ruan, Weili Chen, Ningbo Fang, Zhaoping Wu, Hechun Liu, Jianhua Deng
{"title":"Synergistic Delivery of Paclitaxel-Coated ZIF-8 Metal-Organic Framework Nanoparticles for Enhanced in Vitro Administration in Liver Cancer Cell Lines","authors":"Xinhua Zhao,&nbsp;Xiaoyong Wu,&nbsp;Liqin Ruan,&nbsp;Weili Chen,&nbsp;Ningbo Fang,&nbsp;Zhaoping Wu,&nbsp;Hechun Liu,&nbsp;Jianhua Deng","doi":"10.1007/s10876-024-02739-1","DOIUrl":"10.1007/s10876-024-02739-1","url":null,"abstract":"<div><p>Liver cancer is a major global health challenge, ranking as the third leading cause of cancer-related deaths worldwide. In this study, we explore the use of paclitaxel-coated ZIF-8 metal-organic framework nanoparticles (ZIF-8 NPs/Pacx) as a novel drug delivery system for enhanced liver cancer treatment. A comprehensive set of analyses, including morphology evaluation, particle size distribution, zeta potential measurement, drug loading capacity, encapsulation efficiency, stability, and In vitro drug release behavior, was conducted to assess the nanoparticles’ performance. The ZIF-8 NPs/Pacx demonstrated significant antitumor activity at a concentration of 75 µg/mL, particularly against HepG2 and Hep3B liver cancer cell lines. RT-PCR analysis revealed that ZIF-8 NPs/Pacx stimulated TNF-α expression in HepG2, Hep3B, and normal liver cells (NLCs), with further confirmation through Western blot analysis of TNF-α and β-actin levels. Notably, the nanoparticles exhibited the ability to inhibit cell proliferation and induce apoptosis in liver cancer cells. These findings suggest that ZIF-8 NPs/Pacx could offer an innovative approach for the delivery of paclitaxel to liver cancer cells, maximising treatment effectiveness with minimal side effects, and positioning this system as a promising candidate for future liver cancer treatments.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Characterization of Chitosan/Zinc Oxide Nanocomposite for Enhanced Applications as Antibacterial, Antifungal and Aflatoxin B1 Adsorption
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-024-02760-4
Muhammad Asif Asghar, Farman Ahmed, Abdur Rehman Qamar, Kehkashan Khan, Anila Anwar
{"title":"Synthesis and Characterization of Chitosan/Zinc Oxide Nanocomposite for Enhanced Applications as Antibacterial, Antifungal and Aflatoxin B1 Adsorption","authors":"Muhammad Asif Asghar,&nbsp;Farman Ahmed,&nbsp;Abdur Rehman Qamar,&nbsp;Kehkashan Khan,&nbsp;Anila Anwar","doi":"10.1007/s10876-024-02760-4","DOIUrl":"10.1007/s10876-024-02760-4","url":null,"abstract":"<div><p>The current study was designed to synthesize of chitosan (CS) by shrimp shells and grafted with zinc oxide nanoparticles (ZnO-NPs) in-situ precipitation method. The physical features of nanomaterials were studied using SEM, EDS, XRD, FTIR and UV-vis spectroscopy. The CS/Zn nanocomposite was crystalline, spherical with 12−18 nm in size. Nanocomposite's antibacterial and antifungal activity was evaluated against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> bacterial strains and <i>Aspergillus flavus</i> and <i>A</i>. <i>parasiticus</i> fungal strains, respectively. Additionally, the adsorbent's capacity of nanocomposite was examined with aflatoxin B<sub>1</sub> (AFB<sub>1</sub>). Each nanomaterial shows the significant antibacterial activity against <i>S. aureus</i> and <i>E. coli.</i> The MI values for CS, Zn-NPs and CS/Zn nanocomposite were found to be 256, 128 and 32 µg/mL, respectively. Whereas, the growth of <i>A. flavus, A</i>. <i>parasiticus</i> and the AFB<sub>1</sub> production was inhibited at 5 mg/mL of CS/Zn nanocomposite. Adsorption capacities of ZnO-NPs, CS and CS/Zn nanocomposite were found to be 12.4, 64.5 and 150.4 ng/mg, respectively, as calculated by the Langmuir isotherm model. The thermodynamic and kinetic studies showed that the adsorption process is spontaneous, endothermic and followed the pseudo-second-order kinetic model. In conclusion, the synthesis of CS/Zn is simple, efficient, non-toxic, sustainable, energy-effective and useful as an alternative antibacterial, antifungal and as an AFB<sub>1</sub> detoxification agent in human and animal food.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Characterization of Zinc Oxide Nanoparticles Functionalized with Ellagic Acid: Antibacterial and Antibiofilm Properties and Effect on the Expression of Biofilm Related Genes in Pseudomonas aeruginosa
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-024-02763-1
Hannaneh Karimi, Seyedeh Tooba Shafighi, Leila Asadpour, Ali Salehzadeh
{"title":"Synthesis and Characterization of Zinc Oxide Nanoparticles Functionalized with Ellagic Acid: Antibacterial and Antibiofilm Properties and Effect on the Expression of Biofilm Related Genes in Pseudomonas aeruginosa","authors":"Hannaneh Karimi,&nbsp;Seyedeh Tooba Shafighi,&nbsp;Leila Asadpour,&nbsp;Ali Salehzadeh","doi":"10.1007/s10876-024-02763-1","DOIUrl":"10.1007/s10876-024-02763-1","url":null,"abstract":"<div><p>Biofilm formation contributes to drug-resistant phenotype in <i>P. aeruginosa</i>. In patients with cystic fibrosis, the biofilm made by <i>P. aeruginosa</i>, which is mainly alginate, causes resistance to phagocytosis, as well as increased antibiotic resistance and chronicity of the disease. This work aimed to synthesize Zinc oxide nanoparticles (NPs) functionalized with (3-Chloropropyl) trimethoxysilane (CPTMS) and conjugated with ellagic acid (EA) (ZnO@CPTMS-EA NPs) and characterize their effects on <i>P. aeruginosa</i> growth and expression of some biofilm-related genes. Planktonic growth inhibition was investigated by broth microdilution method, and the antibiofilm property was evaluated by crystal violet staining assay. The effects of ZnO@CPTMS-EA NPs on the expression of the <i>algD</i>, <i>pelA</i> and <i>pslA</i> genes were studied by real-time PCR assay. The synthesized ZnO@CPTMS-EA NPs were spherical, in a size range of 17–35 nm and with Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray diffraction (XRD) characterization that indicated correct synthesis of the particles. The zeta potential and Dynamic Light Scattering (DLS) size of the particles were − 14.1 mV and 191 nm, respectively and the particles showed thermal stability at temperatures up to 200 °C. The minimum inhibitory concentration of ZnO and EA for <i>P. aeruginosa</i> strains was 3.75 mg/mL, while ZnO@CPTMS-EA NPs inhibited bacterial growth at 0.11 mg/mL. Treatment of clinical <i>P. aeruginosa</i> with EA and ZnO NPs reduced biofilm formation to 92.2 and 58.0%, respectively, while treatment with ZnO@CPTMS-EA NPs decreased biofilm formation to 48.5%. Real-time PCR showed that treatment of clinical <i>P. aeruginosa</i> strains with ZnO@CPTMS-EA NPs significantly reduced the expression of the <i>algD</i>, <i>pelA</i> and <i>pslA</i> to 0.43, 0.57 and 0.60 folds, respectively, which were significantly lower than in EA-treated bacteria. This work reports antibiofilm properties of ZnO@CPTMS-EA NPs, which can be largely used to prevent nosocomial infections caused by <i>P. aeruginosa</i> in the disinfection of hospital instruments and equipment.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Mesoporous Silica Nanoparticles for Delivery of Curcumin and Quercetin: Enhanced Skin Permeation and Cytotoxicity Against A375 Melanoma Cells
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2025-02-02 DOI: 10.1007/s10876-025-02769-3
Parmida Zahedi, Pedram Ebrahimnejad, Mohammad Seyedabadi, Amirhossein Babaei
{"title":"Optimized Mesoporous Silica Nanoparticles for Delivery of Curcumin and Quercetin: Enhanced Skin Permeation and Cytotoxicity Against A375 Melanoma Cells","authors":"Parmida Zahedi,&nbsp;Pedram Ebrahimnejad,&nbsp;Mohammad Seyedabadi,&nbsp;Amirhossein Babaei","doi":"10.1007/s10876-025-02769-3","DOIUrl":"10.1007/s10876-025-02769-3","url":null,"abstract":"<div><p>Melanoma, the most aggressive skin cancer, requires novel and effective treatment strategies. This study developed an optimized mesoporous silica nanoparticle (MSN)-based system for the delivery of curcumin and quercetin, two polyphenolic compounds with anticancer properties, to enhance their transdermal delivery. MSNs were synthesized using the sol-gel method and optimized via a Box-Behnken design, resulting in nanoparticles with an average size of 172.92 ± 23.74 nm and a polydispersity index (PDI) of 0.291 ± 0.026. Drug entrapment efficiencies were 46.25 ± 3.55% for curcumin and 50.35 ± 4.65% for quercetin. In vitro drug release showed sustained profiles, with 8.49 ± 0.80% of curcumin and 12.87 ± 1.27% of quercetin released over 24 h. Ex vivo skin permeation studies revealed a 2.6-fold and 2.25-fold increase in permeation for curcumin and quercetin, respectively, compared to free drugs. Cytotoxicity studies demonstrated enhanced efficacy of the co-delivered MSNs formulations, with IC<sub>50</sub> values of 91.351 ± 6.114 µM for curcumin-loaded MSNs and 163.313 ± 12.880 µM for quercetin-loaded MSNs against A375 melanoma cells, significantly lower than those of their free drug counterparts. These findings suggest that MSN-based delivery systems offer a promising strategy for the topical treatment of melanoma by improving drug permeation and therapeutic efficacy.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信