Jessica A. O. Rodrigues, Adenilson O. dos Santos, Alan S. de Menezes, Eliana B. Souto, Francisco F. de Sousa
{"title":"Removal of Toxic Chromium Ions from Wastewater Using Nanomaterials and Environmental Impact – A Review","authors":"Jessica A. O. Rodrigues, Adenilson O. dos Santos, Alan S. de Menezes, Eliana B. Souto, Francisco F. de Sousa","doi":"10.1007/s10876-025-02837-8","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the high risk to human health associated with chromium ions contamination in water, strategies for removing this toxic metal have been increasingly studied. To avoid environmental pollution and promote a circular economy, it is necessary to eliminate chromium from wastewater and recycle it. Among the strategies available, the incorporation of nanomaterials has emerged as a viable and cost-efficient method for the removal of toxic chromium ions. In recent years, many advancements have been made towards the use of several nanomaterials to decrease chromium concentration in contaminated water. The physical and chemical properties inherent to their nanosized range, together with the type of solutions, temperature, pH and contact time, make nanomaterials promising candidates for use in water purification. Combining traditional treatment technologies with nanomaterials opens the pathway for new and more effective treatment processes with greater benefits to population. In this review, we examine the various species of chromium, explore their toxicity levels, and discuss the techniques employed to effectively eliminate this element in particular, nanotechnology-based approaches.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10876-025-02837-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02837-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the high risk to human health associated with chromium ions contamination in water, strategies for removing this toxic metal have been increasingly studied. To avoid environmental pollution and promote a circular economy, it is necessary to eliminate chromium from wastewater and recycle it. Among the strategies available, the incorporation of nanomaterials has emerged as a viable and cost-efficient method for the removal of toxic chromium ions. In recent years, many advancements have been made towards the use of several nanomaterials to decrease chromium concentration in contaminated water. The physical and chemical properties inherent to their nanosized range, together with the type of solutions, temperature, pH and contact time, make nanomaterials promising candidates for use in water purification. Combining traditional treatment technologies with nanomaterials opens the pathway for new and more effective treatment processes with greater benefits to population. In this review, we examine the various species of chromium, explore their toxicity levels, and discuss the techniques employed to effectively eliminate this element in particular, nanotechnology-based approaches.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.