Journal of Algebraic Geometry最新文献

筛选
英文 中文
ACC for local volumes and boundedness of singularities 局部体积的ACC和奇点的有界性
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-11-12 DOI: 10.1090/jag/799
Jingjun Han, Yuchen Liu, Lu Qi
{"title":"ACC for local volumes and boundedness of singularities","authors":"Jingjun Han, Yuchen Liu, Lu Qi","doi":"10.1090/jag/799","DOIUrl":"https://doi.org/10.1090/jag/799","url":null,"abstract":"The ascending chain condition (ACC) conjecture for local volumes predicts that the set of local volumes of Kawamata log terminal (klt) singularities \u0000\u0000 \u0000 \u0000 x\u0000 ∈\u0000 (\u0000 X\u0000 ,\u0000 Δ\u0000 )\u0000 \u0000 xin (X,Delta )\u0000 \u0000\u0000 satisfies the ACC if the coefficients of \u0000\u0000 \u0000 Δ\u0000 Delta\u0000 \u0000\u0000 belong to a descending chain condition (DCC) set. In this paper, we prove the ACC conjecture for local volumes under the assumption that the ambient germ is analytically bounded. We introduce another related conjecture, which predicts the existence of \u0000\u0000 \u0000 δ\u0000 delta\u0000 \u0000\u0000-plt blow-ups of a klt singularity whose local volume has a positive lower bound. We show that the latter conjecture also holds when the ambient germ is analytically bounded. Moreover, we prove that both conjectures hold in dimension 2 as well as for 3-dimensional terminal singularities.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48672119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds Riemann-Roch多项式和超kähler流形的Todd类的正性
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-08-11 DOI: 10.1090/jag/798
Chen Jiang
{"title":"Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds","authors":"Chen Jiang","doi":"10.1090/jag/798","DOIUrl":"https://doi.org/10.1090/jag/798","url":null,"abstract":"<p>For a hyperkähler manifold <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of dimension <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">2n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, Huybrechts showed that there are constants <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 0\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>a</mml:mi>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">a_0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>a</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">a_2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, …, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a Subscript 2 n\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>a</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">a_{2n}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> such that <disp-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi left-parenthesis upper L right-parenthesis equals sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Subscript upper X Baseline left-parenthesis c 1 left-parenthesis upper L right-parenthesis right-parenthesis Superscript i\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>χ<!-- χ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:munderover>\u0000 <mml:mo>∑<!-- ∑ --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>i</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:munderover>\u0000 <mml:mfrac>\u0000 <mml:msub>\u0000 <mml:mi>a</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>i</mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45748862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Existence of embeddings of smooth varieties into linear algebraic groups 线性代数群中光滑变种嵌入的存在性
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-07-31 DOI: 10.1090/jag/793
P. Feller, Immanuel van Santen
{"title":"Existence of embeddings of smooth varieties into linear algebraic groups","authors":"P. Feller, Immanuel van Santen","doi":"10.1090/jag/793","DOIUrl":"https://doi.org/10.1090/jag/793","url":null,"abstract":"We prove that every smooth affine variety of dimension \u0000\u0000 \u0000 d\u0000 d\u0000 \u0000\u0000 embeds into every simple algebraic group of dimension at least \u0000\u0000 \u0000 \u0000 2\u0000 d\u0000 +\u0000 2\u0000 \u0000 2d+2\u0000 \u0000\u0000. We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and build upon parametric transversality results for flexible affine varieties due to Kaliman. By adapting a Chow-group-based argument due to Bloch, Murthy, and Szpiro, we show that our result is optimal up to a possible improvement of the bound to \u0000\u0000 \u0000 \u0000 2\u0000 d\u0000 +\u0000 1\u0000 \u0000 2d+1\u0000 \u0000\u0000.\u0000\u0000In order to study the limits of our embedding method, we use rational homology group calculations of homogeneous spaces and we establish a domination result for rational homology of complex smooth varieties.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41731907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Fixed points, local monodromy, and incompressibility of congruence covers 同余覆盖的不动点、局部单性和不可压缩性
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-07-03 DOI: 10.1090/jag/800
P. Brosnan, N. Fakhruddin
{"title":"Fixed points, local monodromy, and incompressibility of congruence covers","authors":"P. Brosnan, N. Fakhruddin","doi":"10.1090/jag/800","DOIUrl":"https://doi.org/10.1090/jag/800","url":null,"abstract":"We prove a fixed point theorem for the action of certain local monodromy groups on étale covers and use it to deduce lower bounds on essential dimension. In particular, we give more geometric proofs of some of the results of a paper of Farb, Kisin and Wolfson, which uses arithmetic methods to prove incompressibility results for Shimura varieties and moduli spaces of curves. Our method allows us to prove new results for exceptional groups, applies also to the reduction modulo good primes of congruence covers of Shimura varieties and moduli spaces of curves, and also to certain “quantum” covers of moduli spaces of curves arising from a certain TQFT.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46220786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Non-commutative deformations of perverse coherent sheaves and rational curves 反常相干槽轮和有理曲线的非交换变形
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-06-16 DOI: 10.1090/jag/805
Y. Kawamata
{"title":"Non-commutative deformations of perverse coherent sheaves and rational curves","authors":"Y. Kawamata","doi":"10.1090/jag/805","DOIUrl":"https://doi.org/10.1090/jag/805","url":null,"abstract":"We consider non-commutative deformations of sheaves on algebraic varieties. We develop some tools to determine parameter algebras of versal non-commutative deformations for partial simple collections and the structure sheaves of smooth rational curves. We apply them to universal flopping contractions of length \u0000\u0000 \u0000 2\u0000 2\u0000 \u0000\u0000 and higher. We confirm Donovan-Wemyss conjecture in the case of deformations of Laufer’s flops.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41778932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor klt空间上的射影平坦性和具有nef反正则除数的变异的均匀化
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-06-15 DOI: 10.1090/jag/785
D. Greb, Stefan Kebekus, T. Peternell
{"title":"Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor","authors":"D. Greb, Stefan Kebekus, T. Peternell","doi":"10.1090/jag/785","DOIUrl":"https://doi.org/10.1090/jag/785","url":null,"abstract":"We give a criterion for the projectivisation of a reflexive sheaf on a klt space to be induced by a projective representation of the fundamental group of the smooth locus. This criterion is then applied to give a characterisation of finite quotients of projective spaces and Abelian varieties by \u0000\u0000 \u0000 \u0000 Q\u0000 \u0000 mathbb {Q}\u0000 \u0000\u0000-Chern class (in)equalities and a suitable stability condition. This stability condition is formulated in terms of a naturally defined extension of the tangent sheaf by the structure sheaf. We further examine cases in which this stability condition is satisfied, comparing it to K-semistability and related notions.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47943497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
The local-global principle for integral points on stacky curves 叠曲线上积分点的局部-全局原理
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-05-30 DOI: 10.1090/jag/796
M. Bhargava, B. Poonen
{"title":"The local-global principle for integral points on stacky curves","authors":"M. Bhargava, B. Poonen","doi":"10.1090/jag/796","DOIUrl":"https://doi.org/10.1090/jag/796","url":null,"abstract":"<p>We construct a stacky curve of genus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">1/2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> (i.e., Euler characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\">\u0000 <mml:semantics>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>) over <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {Z}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> that has an <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-point and a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript p\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {Z}_p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-point for every prime <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> but no <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {Z}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-point. This is best possible: we also prove that any stacky curve of genus less than <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mrow cl","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47685502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs 光滑del Pezzo对数Calabi-Yau对的热带对应关系
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-05-28 DOI: 10.1090/jag/794
Tim Graefnitz
{"title":"Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs","authors":"Tim Graefnitz","doi":"10.1090/jag/794","DOIUrl":"https://doi.org/10.1090/jag/794","url":null,"abstract":"<p>Consider a log Calabi-Yau pair <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper D right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(X,D)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> consisting of a smooth del Pezzo surface <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of degree <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than-or-equal-to 3\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">geq 3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and a smooth anticanonical divisor <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\u0000 <mml:semantics>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We prove a correspondence between genus zero logarithmic Gromov-Witten invariants of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> intersecting <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\u0000 <mml:semantics>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in a single point with maximal tangency and the consistent wall structure appearing in the dual intersection complex of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper D right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(X,D)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> from the Gross-Siebert reconstruction algorithm. More precisely, the logarithm of the product of functions attached to unbounded walls in the consistent wall structure gives a generati","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48480911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Global Prym-Torelli for double coverings ramified in at least six points 全球普瑞姆-托瑞利的双重覆盖至少延伸到六个点
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-05-22 DOI: 10.1090/jag/779
J. Naranjo, –. Ortega
{"title":"Global Prym-Torelli for double coverings ramified in at least six points","authors":"J. Naranjo, –. Ortega","doi":"10.1090/jag/779","DOIUrl":"https://doi.org/10.1090/jag/779","url":null,"abstract":"<p>We prove that the ramified Prym map <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript g comma r\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>r</mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal P_{g, r}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> which sends a covering <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper D long right-arrow upper C\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>π<!-- π --></mml:mi>\u0000 <mml:mo>:</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo>\u0000 <mml:mi>C</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">pi :Dlongrightarrow C</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> ramified in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\u0000 <mml:semantics>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> points to the Prym variety <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P left-parenthesis pi right-parenthesis colon-equal upper K e r left-parenthesis upper N m Subscript pi Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>P</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>π<!-- π --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>≔</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>e</mml:mi>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:msub>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>π<!-- π --></mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">P(pi )≔Ker(Nm_{pi })</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is an embedding for all <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r greater-than-or-equal-to 6\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>6</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">rge 6</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and for all <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g left-parenthesis upper C ri","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45359188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces 关于代数纤维空间的相对反规范除数的渐近基轨迹
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-05-10 DOI: 10.1090/jag/814
Sho Ejiri, M. Iwai, Shin-ichi Matsumura
{"title":"On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces","authors":"Sho Ejiri, M. Iwai, Shin-ichi Matsumura","doi":"10.1090/jag/814","DOIUrl":"https://doi.org/10.1090/jag/814","url":null,"abstract":"In this paper, we study the relative anti-canonical divisor \u0000\u0000 \u0000 \u0000 −\u0000 \u0000 K\u0000 \u0000 X\u0000 \u0000 /\u0000 \u0000 Y\u0000 \u0000 \u0000 \u0000 -K_{X/Y}\u0000 \u0000\u0000 of an algebraic fiber space \u0000\u0000 \u0000 \u0000 ϕ\u0000 :\u0000 X\u0000 →\u0000 Y\u0000 \u0000 phi colon Xto Y\u0000 \u0000\u0000, and we reveal relations among positivity conditions of \u0000\u0000 \u0000 \u0000 −\u0000 \u0000 K\u0000 \u0000 X\u0000 \u0000 /\u0000 \u0000 Y\u0000 \u0000 \u0000 \u0000 -K_{X/Y}\u0000 \u0000\u0000, certain flatness of direct image sheaves, and variants of the base loci including the stable (augmented, restricted) base loci and upper level sets of Lelong numbers. This paper contains three main results: The first result says that all the above base loci are located in the horizontal direction unless they are empty. The second result is an algebraic proof for Campana–Cao–Matsumura’s equality on Hacon–McKernan’s question, whose original proof depends on analytics methods. The third result proves that algebraic fiber spaces with semi-ample relative anti-canonical divisor actually have a product structure via the base change by an appropriate finite étale cover of \u0000\u0000 \u0000 Y\u0000 Y\u0000 \u0000\u0000. Our proof is based on algebraic as well as analytic methods for positivity of direct image sheaves.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2020-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45585372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信