{"title":"Localizing virtual cycles for Donaldson-Thomas invariants of Calabi-Yau 4-folds","authors":"Y. Kiem, Hyeonjun Park","doi":"10.1090/jag/816","DOIUrl":"https://doi.org/10.1090/jag/816","url":null,"abstract":"<p>In 2020, Oh and Thomas constructed a virtual cycle <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:msup>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">v</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">i</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">r</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo>∈<!-- ∈ --></mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">[X]^{mathrm {vir}} in A_*(X)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for a quasi-projective moduli space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X left-parenthesis sigma right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>σ<!-- σ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">X(sigma )</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of an isotropic cosection <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\u0000 <mml:semantics>\u0000 <mml:mi>σ<!-- σ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">sigma</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the obstruction sheaf <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O b Subscript upper X\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>O</mml:mi>\u0000 <mml:msub>\u0000 <mml:mi>b</mml:mi>\u0000 <mml:mi>X</mml:mi>\u0000 </mml:msub>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Ob_X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of <inline-formula conten","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48281262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimal model program for semi-stable threefolds in mixed characteristic","authors":"Teppei Takamatsu, Shou Yoshikawa","doi":"10.1090/jag/813","DOIUrl":"https://doi.org/10.1090/jag/813","url":null,"abstract":"<p>In this paper, we study the minimal model theory for threefolds in mixed characteristic. As a generalization of a result of Kawamata, we show that the minimal model program (MMP) holds for strictly semi-stable schemes over an excellent Dedekind scheme <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\u0000 <mml:semantics>\u0000 <mml:mi>V</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of relative dimension two without any assumption on the residue characteristics of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\u0000 <mml:semantics>\u0000 <mml:mi>V</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We also prove that we can run a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper K Subscript upper X slash upper V Baseline plus normal upper Delta right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>V</mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(K_{X/V}+Delta )</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-MMP over <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z\">\u0000 <mml:semantics>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Z</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper X right-arrow upper Z\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>π<!-- π --></mml:mi>\u0000 <mml:mo>:<!-- : --></mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\u0000 <mml:mi>Z</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">pi colon X to Z</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a projective birational morphism of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {Q}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-factor","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60551334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elliptic zastava","authors":"M. Finkelberg, M. Matviichuk, A. Polishchuk","doi":"10.1090/jag/803","DOIUrl":"https://doi.org/10.1090/jag/803","url":null,"abstract":"We study the elliptic zastava spaces, their versions (twisted, Coulomb, Mirković local spaces, reduced) and relations with monowalls moduli spaces and Feigin-Odesskiĭ moduli spaces of \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000-bundles with parabolic structure on an elliptic curve.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45663622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ACC for local volumes and boundedness of singularities","authors":"Jingjun Han, Yuchen Liu, Lu Qi","doi":"10.1090/jag/799","DOIUrl":"https://doi.org/10.1090/jag/799","url":null,"abstract":"The ascending chain condition (ACC) conjecture for local volumes predicts that the set of local volumes of Kawamata log terminal (klt) singularities \u0000\u0000 \u0000 \u0000 x\u0000 ∈\u0000 (\u0000 X\u0000 ,\u0000 Δ\u0000 )\u0000 \u0000 xin (X,Delta )\u0000 \u0000\u0000 satisfies the ACC if the coefficients of \u0000\u0000 \u0000 Δ\u0000 Delta\u0000 \u0000\u0000 belong to a descending chain condition (DCC) set. In this paper, we prove the ACC conjecture for local volumes under the assumption that the ambient germ is analytically bounded. We introduce another related conjecture, which predicts the existence of \u0000\u0000 \u0000 δ\u0000 delta\u0000 \u0000\u0000-plt blow-ups of a klt singularity whose local volume has a positive lower bound. We show that the latter conjecture also holds when the ambient germ is analytically bounded. Moreover, we prove that both conjectures hold in dimension 2 as well as for 3-dimensional terminal singularities.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48672119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence of embeddings of smooth varieties into linear algebraic groups","authors":"P. Feller, Immanuel van Santen","doi":"10.1090/jag/793","DOIUrl":"https://doi.org/10.1090/jag/793","url":null,"abstract":"We prove that every smooth affine variety of dimension \u0000\u0000 \u0000 d\u0000 d\u0000 \u0000\u0000 embeds into every simple algebraic group of dimension at least \u0000\u0000 \u0000 \u0000 2\u0000 d\u0000 +\u0000 2\u0000 \u0000 2d+2\u0000 \u0000\u0000. We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and build upon parametric transversality results for flexible affine varieties due to Kaliman. By adapting a Chow-group-based argument due to Bloch, Murthy, and Szpiro, we show that our result is optimal up to a possible improvement of the bound to \u0000\u0000 \u0000 \u0000 2\u0000 d\u0000 +\u0000 1\u0000 \u0000 2d+1\u0000 \u0000\u0000.\u0000\u0000In order to study the limits of our embedding method, we use rational homology group calculations of homogeneous spaces and we establish a domination result for rational homology of complex smooth varieties.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41731907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fixed points, local monodromy, and incompressibility of congruence covers","authors":"P. Brosnan, N. Fakhruddin","doi":"10.1090/jag/800","DOIUrl":"https://doi.org/10.1090/jag/800","url":null,"abstract":"We prove a fixed point theorem for the action of certain local monodromy groups on étale covers and use it to deduce lower bounds on essential dimension. In particular, we give more geometric proofs of some of the results of a paper of Farb, Kisin and Wolfson, which uses arithmetic methods to prove incompressibility results for Shimura varieties and moduli spaces of curves. Our method allows us to prove new results for exceptional groups, applies also to the reduction modulo good primes of congruence covers of Shimura varieties and moduli spaces of curves, and also to certain “quantum” covers of moduli spaces of curves arising from a certain TQFT.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46220786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-commutative deformations of perverse coherent sheaves and rational curves","authors":"Y. Kawamata","doi":"10.1090/jag/805","DOIUrl":"https://doi.org/10.1090/jag/805","url":null,"abstract":"We consider non-commutative deformations of sheaves on algebraic varieties. We develop some tools to determine parameter algebras of versal non-commutative deformations for partial simple collections and the structure sheaves of smooth rational curves. We apply them to universal flopping contractions of length \u0000\u0000 \u0000 2\u0000 2\u0000 \u0000\u0000 and higher. We confirm Donovan-Wemyss conjecture in the case of deformations of Laufer’s flops.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41778932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor","authors":"D. Greb, Stefan Kebekus, T. Peternell","doi":"10.1090/jag/785","DOIUrl":"https://doi.org/10.1090/jag/785","url":null,"abstract":"We give a criterion for the projectivisation of a reflexive sheaf on a klt space to be induced by a projective representation of the fundamental group of the smooth locus. This criterion is then applied to give a characterisation of finite quotients of projective spaces and Abelian varieties by \u0000\u0000 \u0000 \u0000 Q\u0000 \u0000 mathbb {Q}\u0000 \u0000\u0000-Chern class (in)equalities and a suitable stability condition. This stability condition is formulated in terms of a naturally defined extension of the tangent sheaf by the structure sheaf. We further examine cases in which this stability condition is satisfied, comparing it to K-semistability and related notions.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47943497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}