求助PDF
{"title":"Riemann-Roch多项式和超kähler流形的Todd类的正性","authors":"Chen Jiang","doi":"10.1090/jag/798","DOIUrl":null,"url":null,"abstract":"<p>For a hyperkähler manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, Huybrechts showed that there are constants <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 0\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, …, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a Subscript 2 n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_{2n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi left-parenthesis upper L right-parenthesis equals sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Subscript upper X Baseline left-parenthesis c 1 left-parenthesis upper L right-parenthesis right-parenthesis Superscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>χ<!-- χ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:munderover>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:munderover>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>!</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:msub>\n <mml:mi>q</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\chi (L) =\\sum _{i=0}^n\\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n for any line bundle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q Subscript upper X\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>q</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">q_X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the Beauville–Bogomolov–Fujiki quadratic form of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Here the polynomial <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Superscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:munderover>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:munderover>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>!</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:msup>\n <mml:mi>q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\sum _{i=0}^n\\frac {a_{2i}}{(2i)!}q^{i}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is called the Riemann–Roch polynomial of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>In this paper, we show that all coefficients of the Riemann–Roch polynomial of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.</p>\n\n<p>In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal t normal d Superscript 1 slash 2 Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">t</mml:mi>\n <mml:mi mathvariant=\"normal\">d</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {td}^{1/2}(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the root of the Todd genus of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds\",\"authors\":\"Chen Jiang\",\"doi\":\"10.1090/jag/798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a hyperkähler manifold <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, Huybrechts showed that there are constants <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a 0\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a_0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, …, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a Subscript 2 n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a_{2n}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> such that <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"chi left-parenthesis upper L right-parenthesis equals sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Subscript upper X Baseline left-parenthesis c 1 left-parenthesis upper L right-parenthesis right-parenthesis Superscript i\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>χ<!-- χ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:munderover>\\n <mml:mo>∑<!-- ∑ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:munderover>\\n <mml:mfrac>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mi>i</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>!</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:msub>\\n <mml:mi>q</mml:mi>\\n <mml:mi>X</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\chi (L) =\\\\sum _{i=0}^n\\\\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n for any line bundle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q Subscript upper X\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>q</mml:mi>\\n <mml:mi>X</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q_X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the Beauville–Bogomolov–Fujiki quadratic form of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Here the polynomial <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Superscript i\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munderover>\\n <mml:mo>∑<!-- ∑ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:munderover>\\n <mml:mfrac>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mi>i</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>!</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:msup>\\n <mml:mi>q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sum _{i=0}^n\\\\frac {a_{2i}}{(2i)!}q^{i}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is called the Riemann–Roch polynomial of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\\n\\n<p>In this paper, we show that all coefficients of the Riemann–Roch polynomial of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.</p>\\n\\n<p>In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal t normal d Superscript 1 slash 2 Baseline left-parenthesis upper X right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">d</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {td}^{1/2}(X)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the root of the Todd genus of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/798\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/798","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
引用
批量引用
Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds
For a hyperkähler manifold
X
X
of dimension
2
n
2n
, Huybrechts showed that there are constants
a
0
a_0
,
a
2
a_2
, …,
a
2
n
a_{2n}
such that
χ
(
L
)
=
∑
i
=
0
n
a
2
i
(
2
i
)
!
q
X
(
c
1
(
L
)
)
i
\begin{equation*} \chi (L) =\sum _{i=0}^n\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \end{equation*}
for any line bundle
L
L
on
X
X
, where
q
X
q_X
is the Beauville–Bogomolov–Fujiki quadratic form of
X
X
. Here the polynomial
∑
i
=
0
n
a
2
i
(
2
i
)
!
q
i
\sum _{i=0}^n\frac {a_{2i}}{(2i)!}q^{i}
is called the Riemann–Roch polynomial of
X
X
.
In this paper, we show that all coefficients of the Riemann–Roch polynomial of
X
X
are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.
In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of
t
d
1
/
2
(
X
)
\mathrm {td}^{1/2}(X)
, the root of the Todd genus of
X
X
, via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.