Riemann-Roch多项式和超kähler流形的Todd类的正性

IF 0.9 1区 数学 Q2 MATHEMATICS
Chen Jiang
{"title":"Riemann-Roch多项式和超kähler流形的Todd类的正性","authors":"Chen Jiang","doi":"10.1090/jag/798","DOIUrl":null,"url":null,"abstract":"<p>For a hyperkähler manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, Huybrechts showed that there are constants <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 0\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, …, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a Subscript 2 n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_{2n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi left-parenthesis upper L right-parenthesis equals sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Subscript upper X Baseline left-parenthesis c 1 left-parenthesis upper L right-parenthesis right-parenthesis Superscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>χ<!-- χ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:munderover>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:munderover>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>!</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:msub>\n <mml:mi>q</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\chi (L) =\\sum _{i=0}^n\\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n for any line bundle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q Subscript upper X\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>q</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">q_X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the Beauville–Bogomolov–Fujiki quadratic form of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Here the polynomial <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Superscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:munderover>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:munderover>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>!</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:msup>\n <mml:mi>q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\sum _{i=0}^n\\frac {a_{2i}}{(2i)!}q^{i}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is called the Riemann–Roch polynomial of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>In this paper, we show that all coefficients of the Riemann–Roch polynomial of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.</p>\n\n<p>In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal t normal d Superscript 1 slash 2 Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">t</mml:mi>\n <mml:mi mathvariant=\"normal\">d</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {td}^{1/2}(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the root of the Todd genus of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds\",\"authors\":\"Chen Jiang\",\"doi\":\"10.1090/jag/798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a hyperkähler manifold <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, Huybrechts showed that there are constants <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a 0\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a_0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, …, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a Subscript 2 n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a_{2n}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> such that <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"chi left-parenthesis upper L right-parenthesis equals sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Subscript upper X Baseline left-parenthesis c 1 left-parenthesis upper L right-parenthesis right-parenthesis Superscript i\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>χ<!-- χ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:munderover>\\n <mml:mo>∑<!-- ∑ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:munderover>\\n <mml:mfrac>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mi>i</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>!</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:msub>\\n <mml:mi>q</mml:mi>\\n <mml:mi>X</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\chi (L) =\\\\sum _{i=0}^n\\\\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n for any line bundle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q Subscript upper X\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>q</mml:mi>\\n <mml:mi>X</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q_X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the Beauville–Bogomolov–Fujiki quadratic form of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Here the polynomial <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Superscript i\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munderover>\\n <mml:mo>∑<!-- ∑ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:munderover>\\n <mml:mfrac>\\n <mml:msub>\\n <mml:mi>a</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mi>i</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>!</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:msup>\\n <mml:mi>q</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sum _{i=0}^n\\\\frac {a_{2i}}{(2i)!}q^{i}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is called the Riemann–Roch polynomial of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\\n\\n<p>In this paper, we show that all coefficients of the Riemann–Roch polynomial of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.</p>\\n\\n<p>In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal t normal d Superscript 1 slash 2 Baseline left-parenthesis upper X right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">t</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">d</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {td}^{1/2}(X)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, the root of the Todd genus of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/798\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/798","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

对于维数2n的超kähler流形X,Huybrechts证明了存在常数a 0 a_ 0,a 2 a_ 2…,使得χ(L)=∑i=0na2 i(2i)!q X(c1(L))i \ begin{equipment*}\chi(L)=\sum_{i=0}^n \ frac{a_{2i}}{(2i)!}q_X(c_1(L))^{i}\end{equation*},其中q X q_X是X X的Beauville–Bogomolov–Fujiki二次型。这里的多项式∑i=0na2i(2i)!qi\sum_{i=0}^n\frac{a_{2i}}{(2i)!}q^{i}称为X的黎曼-罗奇多项式。这证实了曹和作者提出的一个猜想,该猜想暗示了Kawamata对射影超kähler流形的有效非消失猜想。它还证实了Riess关于Riemann-Roch多项式严格单调性的一个问题。为了估计Riemann–Roch多项式的系数,我们对X的Todd亏格的根t d 1/2(X)\mathrm{td}^{1/2}(X)进行了Lefschetz型分解,通过Rozansky–Witten理论,遵循Hitchin和Sawon以及Nieper-Wißkirchen的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds

For a hyperkähler manifold X X of dimension 2 n 2n , Huybrechts showed that there are constants a 0 a_0 , a 2 a_2 , …, a 2 n a_{2n} such that χ ( L ) = i = 0 n a 2 i ( 2 i ) ! q X ( c 1 ( L ) ) i \begin{equation*} \chi (L) =\sum _{i=0}^n\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \end{equation*} for any line bundle L L on X X , where q X q_X is the Beauville–Bogomolov–Fujiki quadratic form of X X . Here the polynomial i = 0 n a 2 i ( 2 i ) ! q i \sum _{i=0}^n\frac {a_{2i}}{(2i)!}q^{i} is called the Riemann–Roch polynomial of X X .

In this paper, we show that all coefficients of the Riemann–Roch polynomial of X X are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.

In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of t d 1 / 2 ( X ) \mathrm {td}^{1/2}(X) , the root of the Todd genus of X X , via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信