Journal of Algebraic Geometry最新文献

筛选
英文 中文
On the cohomology of 𝑝-adic analytic spaces, I: The basic comparison theorem 论𝑝-自洽解析空间的同调 I:基本比较定理
IF 0.9 1区 数学
Journal of Algebraic Geometry Pub Date : 2024-07-26 DOI: 10.1090/jag/835
Pierre Colmez, Wiesława Nizioł
{"title":"On the cohomology of 𝑝-adic analytic spaces, I: The basic comparison theorem","authors":"Pierre Colmez, Wiesława Nizioł","doi":"10.1090/jag/835","DOIUrl":"https://doi.org/10.1090/jag/835","url":null,"abstract":"<p>The purpose of this paper is to prove a basic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\u0000 <mml:semantics>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic field: <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic pro-étale cohomology, in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper B Subscript d upper R Superscript plus\">\u0000 <mml:semantics>\u0000 <mml:msubsup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">B</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>dR</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo>+</mml:mo>\u0000 </mml:msubsup>\u0000 <mml:annotation encoding=\"application/x-tex\">{mathbf B}^+_{operatorname {dR} }</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>). The key computation is the passage from absolute crystalline cohomology to Hyodo–Kato cohomology and the construction of the related Hyodo–Kato isomorphism. We also “geometrize” our comparison theorem by turning <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic pro-étale and syntomic cohomologies into sheaves on the category <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal e normal r normal f Subscript upper C\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">P</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">e</mml:mi>\u0000 <mml:mi mathv","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted logarithmic complexes of positively weighted homogeneous divisors 正加权同质除数的扭曲对数复数
IF 0.9 1区 数学
Journal of Algebraic Geometry Pub Date : 2024-07-12 DOI: 10.1090/jag/833
Daniel Bath, M. Saito
{"title":"Twisted logarithmic complexes of positively weighted homogeneous divisors","authors":"Daniel Bath, M. Saito","doi":"10.1090/jag/833","DOIUrl":"https://doi.org/10.1090/jag/833","url":null,"abstract":"For a rank 1 local system on the complement of a reduced divisor on a complex manifold \u0000\u0000 \u0000 X\u0000 X\u0000 \u0000\u0000, its cohomology is calculated by the twisted meromorphic de Rham complex. Assuming the divisor is everywhere positively weighted homogeneous, we study necessary or sufficient conditions for a quasi-isomorphism from its twisted logarithmic subcomplex, called the logarithmic comparison theorem (LCT), by using a stronger version in terms of the associated complex of \u0000\u0000 \u0000 \u0000 D\u0000 X\u0000 \u0000 D_X\u0000 \u0000\u0000-modules. In case the connection is a pullback by a defining function \u0000\u0000 \u0000 f\u0000 f\u0000 \u0000\u0000 of the divisor and the residue is \u0000\u0000 \u0000 α\u0000 alpha\u0000 \u0000\u0000, we prove among others that if LCT holds, the annihilator of \u0000\u0000 \u0000 \u0000 f\u0000 \u0000 α\u0000 −\u0000 1\u0000 \u0000 \u0000 f^{alpha -1}\u0000 \u0000\u0000 in \u0000\u0000 \u0000 \u0000 D\u0000 X\u0000 \u0000 D_X\u0000 \u0000\u0000 is generated by first order differential operators and \u0000\u0000 \u0000 \u0000 α\u0000 −\u0000 1\u0000 −\u0000 j\u0000 \u0000 alpha -1-j\u0000 \u0000\u0000 is not a root of the Bernstein-Sato polynomial for any positive integer \u0000\u0000 \u0000 j\u0000 j\u0000 \u0000\u0000. The converse holds assuming either of the two conditions in case the associated complex of \u0000\u0000 \u0000 \u0000 D\u0000 X\u0000 \u0000 D_X\u0000 \u0000\u0000-modules is acyclic except for the top degree. In the case where the local system is constant, the divisor is defined by a homogeneous polynomial, and the associated projective hypersurface has only weighted homogeneous isolated singularities, we show that LCT is equivalent to that \u0000\u0000 \u0000 \u0000 −\u0000 1\u0000 \u0000 -1\u0000 \u0000\u0000 is the unique integral root of the Bernstein-Sato polynomial. We also give a simple proof of LCT in the hyperplane arrangement case under appropriate assumptions on residues, which is an immediate corollary of higher cohomology vanishing associated with Castelnuovo-Mumford regularity. Here the zero-extension case is also treated.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141652266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Atomic objects on hyper-Kähler manifolds 超凯勒流形上的原子物体
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2024-04-19 DOI: 10.1090/jag/830
Thorsten Beckmann
{"title":"Atomic objects on hyper-Kähler manifolds","authors":"Thorsten Beckmann","doi":"10.1090/jag/830","DOIUrl":"https://doi.org/10.1090/jag/830","url":null,"abstract":"We introduce and study the notion of atomic sheaves and complexes on higher-dimensional hyper-Kähler manifolds and show that they share many of the intriguing properties of simple sheaves on K3 surfaces. For example, we prove formality of the dg algebra of derived endomorphisms for stable atomic bundles. We further demonstrate the characteristics of atomic objects by studying atomic Lagrangian submanifolds. In the appendix, we prove nonexistence results for spherical objects on hyper-Kähler manifolds.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140683496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Moduli of ℚ-Gorenstein pairs and applications ℚ-戈伦斯坦对的模量及其应用
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2024-01-02 DOI: 10.1090/jag/823
Stefano Filipazzi, Giovanni Inchiostro
{"title":"Moduli of ℚ-Gorenstein pairs and applications","authors":"Stefano Filipazzi, Giovanni Inchiostro","doi":"10.1090/jag/823","DOIUrl":"https://doi.org/10.1090/jag/823","url":null,"abstract":"We develop a framework to construct moduli spaces of \u0000\u0000 \u0000 \u0000 \u0000 Q\u0000 \u0000 \u0000 {mathbb {Q}}\u0000 \u0000\u0000-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of \u0000\u0000 \u0000 \u0000 \u0000 Q\u0000 \u0000 \u0000 {mathbb {Q}}\u0000 \u0000\u0000-stable pair. We show that these choices give a proper moduli space with projective coarse moduli space and they prevent some pathologies of the moduli space of stable pairs when the coefficients are smaller than \u0000\u0000 \u0000 \u0000 1\u0000 2\u0000 \u0000 frac {1}{2}\u0000 \u0000\u0000. Lastly, we apply this machinery to provide an alternative proof of the projectivity of the moduli space of stable pairs.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139452253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Splitting of Gromov–Witten invariants with toric gluing strata 具有环面胶合地层的Gromov-Witten不变量的分裂
1区 数学
Journal of Algebraic Geometry Pub Date : 2023-11-13 DOI: 10.1090/jag/826
Yixian Wu
{"title":"Splitting of Gromov–Witten invariants with toric gluing strata","authors":"Yixian Wu","doi":"10.1090/jag/826","DOIUrl":"https://doi.org/10.1090/jag/826","url":null,"abstract":"We prove a splitting formula that reconstructs the logarithmic Gromov–Witten invariants of simple normal crossing varieties from the punctured Gromov–Witten invariants of their irreducible components, under the assumption of the gluing strata being toric varieties. The formula is based on the punctured Gromov–Witten theory developed by Abramovich, Chen, Gross, and Siebert.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134993320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The higher Du Bois and higher rational properties for isolated singularities 孤立奇点的高杜波依斯和高有理性质
1区 数学
Journal of Algebraic Geometry Pub Date : 2023-11-09 DOI: 10.1090/jag/824
Robert Friedman, Radu Laza
{"title":"The higher Du Bois and higher rational properties for isolated singularities","authors":"Robert Friedman, Radu Laza","doi":"10.1090/jag/824","DOIUrl":"https://doi.org/10.1090/jag/824","url":null,"abstract":"Higher rational and higher Du Bois singularities have recently been introduced as natural generalizations of the standard definitions of rational and Du Bois singularities. In this note, we discuss these properties for isolated singularities, especially in the locally complete intersection (lci) case. First, we reprove the fact that a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rational isolated singularity is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Du Bois without any lci assumption. For isolated lci singularities, we give a complete characterization of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Du Bois and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rational singularities in terms of standard invariants of singularities. In particular, we show that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Du Bois singularities are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k minus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rational for isolated lci singularities. In the course of the proof, we establish some new relations between invariants of isolated lci singularities and show that many of these vanish. The methods also lead to a quick proof of an inversion of adjunction theorem in the isolated lci case. Finally, we discuss some results specific to the hypersurface case.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135192781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Arithmetic Okounkov bodies and positivity of adelic Cartier divisors 算术Okounkov体与adelic Cartier除数的正性
1区 数学
Journal of Algebraic Geometry Pub Date : 2023-10-17 DOI: 10.1090/jag/821
François Ballaÿ
{"title":"Arithmetic Okounkov bodies and positivity of adelic Cartier divisors","authors":"François Ballaÿ","doi":"10.1090/jag/821","DOIUrl":"https://doi.org/10.1090/jag/821","url":null,"abstract":"In algebraic geometry, theorems of Küronya and Lozovanu characterize the ampleness and the nefness of a Cartier divisor on a projective variety in terms of the shapes of its associated Okounkov bodies. We prove the analogous result in the context of Arakelov geometry, showing that the arithmetic ampleness and nefness of an adelic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{mathbb {R}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Cartier divisor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D overbar\"> <mml:semantics> <mml:mover> <mml:mi>D</mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">overline {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are determined by arithmetic Okounkov bodies in the sense of Boucksom and Chen. Our main results generalize to arbitrary projective varieties criteria for the positivity of toric metrized <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{mathbb {R}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-divisors on toric varieties established by Burgos Gil, Moriwaki, Philippon and Sombra. As an application, we show that the absolute minimum of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D overbar\"> <mml:semantics> <mml:mover> <mml:mi>D</mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">overline {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coincides with the infimum of the Boucksom–Chen concave transform, and we prove a converse to the arithmetic Hilbert-Samuel theorem under mild positivity assumptions. We also establish new criteria for the existence of generic nets of small points and subvarieties.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135993452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Refined count of oriented real rational curves 定向实有理曲线的精细化计数
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2023-05-05 DOI: 10.1090/jag/801
Thomas Blomme
{"title":"Refined count of oriented real rational curves","authors":"Thomas Blomme","doi":"10.1090/jag/801","DOIUrl":"https://doi.org/10.1090/jag/801","url":null,"abstract":"We introduce a quantum index for oriented real curves inside toric varieties. This quantum index is related to the computation of the area of the amoeba of the curve for some chosen \u0000\u0000 \u0000 2\u0000 2\u0000 \u0000\u0000-form. We then make a refined signed count of oriented real rational curves solution to some enumerative problem. This generalizes the 2017 results of Mikhalkin to higher dimension. Finally, we use the tropical approach to relate these new refined invariants to previously known tropical refined invariants.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43704449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric criteria for 𝔸¹-connectedness and applications to norm varieties 关于连接性的几何判据及其在范数变体上的应用
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2022-08-29 DOI: 10.1090/jag/790
Chetan T. Balwe, A. Hogadi, Anand Sawant
{"title":"Geometric criteria for 𝔸¹-connectedness and applications to norm varieties","authors":"Chetan T. Balwe, A. Hogadi, Anand Sawant","doi":"10.1090/jag/790","DOIUrl":"https://doi.org/10.1090/jag/790","url":null,"abstract":"<p>We show that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {A}^1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-connectedness of a large class of varieties over a field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\u0000 <mml:semantics>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> can be characterized as the condition that their generic point can be connected to a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\u0000 <mml:semantics>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-rational point using (not necessarily naive) <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {A}^1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-homotopies. We also show that symmetric powers of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {A}^1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-connected smooth projective varieties (over an arbitrary field) as well as smooth proper models of them (over an algebraically closed field of characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\u0000 <mml:semantics>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>) are <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"applicatio","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42482940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nondegenerate locally tame complete intersection varieties and geometry of nonisolated hypersurface singularities 非孤立超曲面奇点的非退化局部驯服完全交变与几何
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2022-05-05 DOI: 10.1090/jag/784
C. Eyral, M. Oka
{"title":"Nondegenerate locally tame complete intersection varieties and geometry of nonisolated hypersurface singularities","authors":"C. Eyral, M. Oka","doi":"10.1090/jag/784","DOIUrl":"https://doi.org/10.1090/jag/784","url":null,"abstract":"We give a criterion to test geometric properties such as Whitney equisingularity and Thom’s \u0000\u0000 \u0000 \u0000 a\u0000 f\u0000 \u0000 a_f\u0000 \u0000\u0000 condition for new families of (possibly nonisolated) hypersurface singularities that “behave well” with respect to their Newton diagrams. As an important corollary, we obtain that in such families all members have isomorphic Milnor fibrations.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41639855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信