The higher Du Bois and higher rational properties for isolated singularities

IF 0.9 1区 数学 Q2 MATHEMATICS
Robert Friedman, Radu Laza
{"title":"The higher Du Bois and higher rational properties for isolated singularities","authors":"Robert Friedman, Radu Laza","doi":"10.1090/jag/824","DOIUrl":null,"url":null,"abstract":"Higher rational and higher Du Bois singularities have recently been introduced as natural generalizations of the standard definitions of rational and Du Bois singularities. In this note, we discuss these properties for isolated singularities, especially in the locally complete intersection (lci) case. First, we reprove the fact that a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rational isolated singularity is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Du Bois without any lci assumption. For isolated lci singularities, we give a complete characterization of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Du Bois and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rational singularities in terms of standard invariants of singularities. In particular, we show that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Du Bois singularities are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k minus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rational for isolated lci singularities. In the course of the proof, we establish some new relations between invariants of isolated lci singularities and show that many of these vanish. The methods also lead to a quick proof of an inversion of adjunction theorem in the isolated lci case. Finally, we discuss some results specific to the hypersurface case.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" 14","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jag/824","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Higher rational and higher Du Bois singularities have recently been introduced as natural generalizations of the standard definitions of rational and Du Bois singularities. In this note, we discuss these properties for isolated singularities, especially in the locally complete intersection (lci) case. First, we reprove the fact that a k k -rational isolated singularity is k k -Du Bois without any lci assumption. For isolated lci singularities, we give a complete characterization of the k k -Du Bois and k k -rational singularities in terms of standard invariants of singularities. In particular, we show that k k -Du Bois singularities are ( k 1 ) (k-1) -rational for isolated lci singularities. In the course of the proof, we establish some new relations between invariants of isolated lci singularities and show that many of these vanish. The methods also lead to a quick proof of an inversion of adjunction theorem in the isolated lci case. Finally, we discuss some results specific to the hypersurface case.
孤立奇点的高杜波依斯和高有理性质
高有理数和高杜波依斯奇点最近被引入作为有理数和杜波依斯奇点标准定义的自然推广。在这篇笔记中,我们讨论了孤立奇点的这些性质,特别是在局部完全交集(lci)情况下。首先,我们在没有任何lci假设的情况下,证明了kk -有理孤立奇点是kk -Du Bois的事实。对于孤立的lci奇点,我们用奇点的标准不变量给出了k k -杜波依斯奇点和k k -有理奇点的完整刻画。特别地,我们证明了k k -Du Bois奇点对于孤立的lci奇点是(k−1)(k-1) -有理的。在证明过程中,我们建立了孤立lci奇点不变量之间的一些新关系,并证明了其中许多不变量是消失的。该方法还能快速证明孤立lci情况下附加定理的反演。最后,我们讨论了一些特定于超曲面情况的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信