算术Okounkov体与adelic Cartier除数的正性

IF 0.9 1区 数学 Q2 MATHEMATICS
François Ballaÿ
{"title":"算术Okounkov体与adelic Cartier除数的正性","authors":"François Ballaÿ","doi":"10.1090/jag/821","DOIUrl":null,"url":null,"abstract":"In algebraic geometry, theorems of Küronya and Lozovanu characterize the ampleness and the nefness of a Cartier divisor on a projective variety in terms of the shapes of its associated Okounkov bodies. We prove the analogous result in the context of Arakelov geometry, showing that the arithmetic ampleness and nefness of an adelic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\mathbb {R}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Cartier divisor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D overbar\"> <mml:semantics> <mml:mover> <mml:mi>D</mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are determined by arithmetic Okounkov bodies in the sense of Boucksom and Chen. Our main results generalize to arbitrary projective varieties criteria for the positivity of toric metrized <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\mathbb {R}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-divisors on toric varieties established by Burgos Gil, Moriwaki, Philippon and Sombra. As an application, we show that the absolute minimum of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D overbar\"> <mml:semantics> <mml:mover> <mml:mi>D</mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coincides with the infimum of the Boucksom–Chen concave transform, and we prove a converse to the arithmetic Hilbert-Samuel theorem under mild positivity assumptions. We also establish new criteria for the existence of generic nets of small points and subvarieties.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Arithmetic Okounkov bodies and positivity of adelic Cartier divisors\",\"authors\":\"François Ballaÿ\",\"doi\":\"10.1090/jag/821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In algebraic geometry, theorems of Küronya and Lozovanu characterize the ampleness and the nefness of a Cartier divisor on a projective variety in terms of the shapes of its associated Okounkov bodies. We prove the analogous result in the context of Arakelov geometry, showing that the arithmetic ampleness and nefness of an adelic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathbb {R}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Cartier divisor <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D overbar\\\"> <mml:semantics> <mml:mover> <mml:mi>D</mml:mi> <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are determined by arithmetic Okounkov bodies in the sense of Boucksom and Chen. Our main results generalize to arbitrary projective varieties criteria for the positivity of toric metrized <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathbb {R}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-divisors on toric varieties established by Burgos Gil, Moriwaki, Philippon and Sombra. As an application, we show that the absolute minimum of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D overbar\\\"> <mml:semantics> <mml:mover> <mml:mi>D</mml:mi> <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coincides with the infimum of the Boucksom–Chen concave transform, and we prove a converse to the arithmetic Hilbert-Samuel theorem under mild positivity assumptions. We also establish new criteria for the existence of generic nets of small points and subvarieties.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/821\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jag/821","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在代数几何中,k ronya定理和Lozovanu定理描述了一个卡地亚除数在一个投影变量上的丰富性和整洁性,这是根据其相关的Okounkov体的形状来描述的。我们在Arakelov几何的背景下证明了类似的结果,证明了线性R {\mathbb {R}} -Cartier因子D¯\overline {D}的算术丰度和整洁度是由Boucksom和Chen意义上的算术Okounkov体决定的。我们的主要结果推广到由Burgos Gil、Moriwaki、Philippon和Sombra建立的环测度R {\mathbb {R}} -因子在环上正性的任意射影变体准则。作为一个应用,我们证明了D¯\overline {D}的绝对极小值与Boucksom-Chen凹变换的极小值一致,并证明了在温和正假设下算术Hilbert-Samuel定理的一个逆。我们还建立了小点和子变种的一般网存在性的新判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic Okounkov bodies and positivity of adelic Cartier divisors
In algebraic geometry, theorems of Küronya and Lozovanu characterize the ampleness and the nefness of a Cartier divisor on a projective variety in terms of the shapes of its associated Okounkov bodies. We prove the analogous result in the context of Arakelov geometry, showing that the arithmetic ampleness and nefness of an adelic R {\mathbb {R}} -Cartier divisor D ¯ \overline {D} are determined by arithmetic Okounkov bodies in the sense of Boucksom and Chen. Our main results generalize to arbitrary projective varieties criteria for the positivity of toric metrized R {\mathbb {R}} -divisors on toric varieties established by Burgos Gil, Moriwaki, Philippon and Sombra. As an application, we show that the absolute minimum of D ¯ \overline {D} coincides with the infimum of the Boucksom–Chen concave transform, and we prove a converse to the arithmetic Hilbert-Samuel theorem under mild positivity assumptions. We also establish new criteria for the existence of generic nets of small points and subvarieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信