随机复子流形的期望局部拓扑

IF 0.9 1区 数学 Q2 MATHEMATICS
D. Gayet
{"title":"随机复子流形的期望局部拓扑","authors":"D. Gayet","doi":"10.1090/jag/817","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n\\geq 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r element-of StartSet 1 comma midline-horizontal-ellipsis comma n minus 1 EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">r\\in \\{1, \\cdots , n-1\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be integers, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a compact smooth Kähler manifold of complex dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a holomorphic vector bundle with complex rank <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and equipped with a Hermitian metric <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Subscript upper E\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>E</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">h_E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an ample holomorphic line bundle over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> equipped with a metric <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with positive curvature form. For any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d element-of double-struck upper N\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d\\in \\mathbb N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> large enough, we equip the space of holomorphic sections <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 0 Baseline left-parenthesis upper M comma upper E circled-times upper L Superscript d Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^0(M,E\\otimes L^d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the natural Gaussian measure associated to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Subscript upper E\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>E</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">h_E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and its curvature form. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U subset-of upper M\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>U</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>M</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">U\\subset M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an open subset with smooth boundary. We prove that the average of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis n minus r right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(n-r)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-th Betti number of the vanishing locus in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\n <mml:semantics>\n <mml:mi>U</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a random section <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s\">\n <mml:semantics>\n <mml:mi>s</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 0 Baseline left-parenthesis upper M comma upper E circled-times upper L Superscript d Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^0(M,E\\otimes L^d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is asymptotic to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartBinomialOrMatrix n minus 1 Choose r minus 1 EndBinomialOrMatrix d Superscript n Baseline integral Underscript upper U Endscripts c 1 left-parenthesis upper L right-parenthesis Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-OPEN\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mfrac linethickness=\"0\">\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-CLOSE\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n </mml:mrow>\n <mml:msup>\n <mml:mi>d</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:msub>\n <mml:mo>∫<!-- ∫ --></mml:mo>\n <mml:mi>U</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>L</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{n-1 \\choose r-1} d^n\\int _U c_1(L)^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for large ","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expected local topology of random complex submanifolds\",\"authors\":\"D. Gayet\",\"doi\":\"10.1090/jag/817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\geq 2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r element-of StartSet 1 comma midline-horizontal-ellipsis comma n minus 1 EndSet\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>r</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">r\\\\in \\\\{1, \\\\cdots , n-1\\\\}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be integers, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a compact smooth Kähler manifold of complex dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\">\\n <mml:semantics>\\n <mml:mi>E</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a holomorphic vector bundle with complex rank <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\">\\n <mml:semantics>\\n <mml:mi>r</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and equipped with a Hermitian metric <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h Subscript upper E\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>h</mml:mi>\\n <mml:mi>E</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h_E</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be an ample holomorphic line bundle over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> equipped with a metric <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\">\\n <mml:semantics>\\n <mml:mi>h</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with positive curvature form. For any <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d element-of double-struck upper N\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d\\\\in \\\\mathbb N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> large enough, we equip the space of holomorphic sections <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 0 Baseline left-parenthesis upper M comma upper E circled-times upper L Superscript d Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>E</mml:mi>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mi>d</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^0(M,E\\\\otimes L^d)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with the natural Gaussian measure associated to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h Subscript upper E\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>h</mml:mi>\\n <mml:mi>E</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h_E</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\">\\n <mml:semantics>\\n <mml:mi>h</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and its curvature form. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U subset-of upper M\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>U</mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mi>M</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U\\\\subset M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be an open subset with smooth boundary. We prove that the average of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis n minus r right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(n-r)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-th Betti number of the vanishing locus in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U\\\">\\n <mml:semantics>\\n <mml:mi>U</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of a random section <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s\\\">\\n <mml:semantics>\\n <mml:mi>s</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">s</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 0 Baseline left-parenthesis upper M comma upper E circled-times upper L Superscript d Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>E</mml:mi>\\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mi>d</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^0(M,E\\\\otimes L^d)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is asymptotic to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartBinomialOrMatrix n minus 1 Choose r minus 1 EndBinomialOrMatrix d Superscript n Baseline integral Underscript upper U Endscripts c 1 left-parenthesis upper L right-parenthesis Superscript n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-OPEN\\\">\\n <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:mfrac linethickness=\\\"0\\\">\\n <mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mi>r</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-CLOSE\\\">\\n <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:msup>\\n <mml:mi>d</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n <mml:msub>\\n <mml:mo>∫<!-- ∫ --></mml:mo>\\n <mml:mi>U</mml:mi>\\n </mml:msub>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>L</mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{n-1 \\\\choose r-1} d^n\\\\int _U c_1(L)^n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for large \",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/817\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/817","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设n≥2n\geq2且r∈{1,…,n−1}r\in\{1、\cdots、n-1}为整数,M M为复维数n n的紧致光滑Kähler流形,E是一个复秩r r的全纯向量丛,具有Hermitian度量h E hE,L L是M M上的一个充分全纯线丛,具有正曲率形式的度量h,我们将全纯截面空间H0(M,E⊗ld)H^0(M,E\otimes L^d)与hE_E,hh及其曲率形式相关联的自然高斯测度相装备。设U⊂M U子集M是一个具有光滑边界的开子集。我们证明了H0(M,E⊗ld)H^0(M,E\otimes L^d)的随机截面s s的U U中消失轨迹的第(n−r)(n-r)个Betti数的平均值渐近于(n−1 r−1)d nõU c 1(L)n{n-1选择r-1}d^n\int _U c_1(L)^n表示大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected local topology of random complex submanifolds

Let n 2 n\geq 2 and r { 1 , , n 1 } r\in \{1, \cdots , n-1\} be integers, M M be a compact smooth Kähler manifold of complex dimension n n , E E be a holomorphic vector bundle with complex rank r r and equipped with a Hermitian metric h E h_E , and L L be an ample holomorphic line bundle over M M equipped with a metric h h with positive curvature form. For any d N d\in \mathbb N large enough, we equip the space of holomorphic sections H 0 ( M , E L d ) H^0(M,E\otimes L^d) with the natural Gaussian measure associated to h E h_E , h h and its curvature form. Let U M U\subset M be an open subset with smooth boundary. We prove that the average of the ( n r ) (n-r) -th Betti number of the vanishing locus in U U of a random section s s of H 0 ( M , E L d ) H^0(M,E\otimes L^d) is asymptotic to ( n 1 r 1 ) d n U c 1 ( L ) n {n-1 \choose r-1} d^n\int _U c_1(L)^n for large

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信