定向实有理曲线的精细化计数

IF 0.9 1区 数学 Q2 MATHEMATICS
Thomas Blomme
{"title":"定向实有理曲线的精细化计数","authors":"Thomas Blomme","doi":"10.1090/jag/801","DOIUrl":null,"url":null,"abstract":"We introduce a quantum index for oriented real curves inside toric varieties. This quantum index is related to the computation of the area of the amoeba of the curve for some chosen \n\n \n 2\n 2\n \n\n-form. We then make a refined signed count of oriented real rational curves solution to some enumerative problem. This generalizes the 2017 results of Mikhalkin to higher dimension. Finally, we use the tropical approach to relate these new refined invariants to previously known tropical refined invariants.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refined count of oriented real rational curves\",\"authors\":\"Thomas Blomme\",\"doi\":\"10.1090/jag/801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a quantum index for oriented real curves inside toric varieties. This quantum index is related to the computation of the area of the amoeba of the curve for some chosen \\n\\n \\n 2\\n 2\\n \\n\\n-form. We then make a refined signed count of oriented real rational curves solution to some enumerative problem. This generalizes the 2017 results of Mikhalkin to higher dimension. Finally, we use the tropical approach to relate these new refined invariants to previously known tropical refined invariants.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/801\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/801","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了复曲面内有向实曲线的量子指数。这个量子指数与某些选定的2-2形式的曲线变形虫面积的计算有关。然后,我们对一些枚举问题给出了一个有向实有理曲线的精细有符号计数解。这将Mikhalkin 2017年的结果推广到了更高的维度。最后,我们使用热带方法将这些新的精化不变量与以前已知的热带精化不变量联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined count of oriented real rational curves
We introduce a quantum index for oriented real curves inside toric varieties. This quantum index is related to the computation of the area of the amoeba of the curve for some chosen 2 2 -form. We then make a refined signed count of oriented real rational curves solution to some enumerative problem. This generalizes the 2017 results of Mikhalkin to higher dimension. Finally, we use the tropical approach to relate these new refined invariants to previously known tropical refined invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信