{"title":"Expected local topology of random complex submanifolds","authors":"D. Gayet","doi":"10.1090/jag/817","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n\\geq 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r element-of StartSet 1 comma midline-horizontal-ellipsis comma n minus 1 EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">r\\in \\{1, \\cdots , n-1\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be integers, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a compact smooth Kähler manifold of complex dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a holomorphic vector bundle with complex rank <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and equipped with a Hermitian metric <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Subscript upper E\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>E</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">h_E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an ample holomorphic line bundle over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> equipped with a metric <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with positive curvature form. For any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d element-of double-struck upper N\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d\\in \\mathbb N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> large enough, we equip the space of holomorphic sections <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 0 Baseline left-parenthesis upper M comma upper E circled-times upper L Superscript d Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^0(M,E\\otimes L^d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the natural Gaussian measure associated to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h Subscript upper E\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>h</mml:mi>\n <mml:mi>E</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">h_E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and its curvature form. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U subset-of upper M\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>U</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>M</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">U\\subset M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an open subset with smooth boundary. We prove that the average of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis n minus r right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(n-r)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-th Betti number of the vanishing locus in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\n <mml:semantics>\n <mml:mi>U</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a random section <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s\">\n <mml:semantics>\n <mml:mi>s</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 0 Baseline left-parenthesis upper M comma upper E circled-times upper L Superscript d Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^0(M,E\\otimes L^d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is asymptotic to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartBinomialOrMatrix n minus 1 Choose r minus 1 EndBinomialOrMatrix d Superscript n Baseline integral Underscript upper U Endscripts c 1 left-parenthesis upper L right-parenthesis Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-OPEN\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mfrac linethickness=\"0\">\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-CLOSE\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n </mml:mrow>\n <mml:msup>\n <mml:mi>d</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:msub>\n <mml:mo>∫<!-- ∫ --></mml:mo>\n <mml:mi>U</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>L</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{n-1 \\choose r-1} d^n\\int _U c_1(L)^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for large ","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/817","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let n≥2n\geq 2 and r∈{1,⋯,n−1}r\in \{1, \cdots , n-1\} be integers, MM be a compact smooth Kähler manifold of complex dimension nn, EE be a holomorphic vector bundle with complex rank rr and equipped with a Hermitian metric hEh_E, and LL be an ample holomorphic line bundle over MM equipped with a metric hh with positive curvature form. For any d∈Nd\in \mathbb N large enough, we equip the space of holomorphic sections H0(M,E⊗Ld)H^0(M,E\otimes L^d) with the natural Gaussian measure associated to hEh_E, hh and its curvature form. Let U⊂MU\subset M be an open subset with smooth boundary. We prove that the average of the (n−r)(n-r)-th Betti number of the vanishing locus in UU of a random section ss of H0(M,E⊗Ld)H^0(M,E\otimes L^d) is asymptotic to (n−1r−1)dn∫Uc1(L)n{n-1 \choose r-1} d^n\int _U c_1(L)^n for large
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.