ℚ-戈伦斯坦对的模量及其应用

IF 0.9 1区 数学 Q2 MATHEMATICS
Stefano Filipazzi, Giovanni Inchiostro
{"title":"ℚ-戈伦斯坦对的模量及其应用","authors":"Stefano Filipazzi, Giovanni Inchiostro","doi":"10.1090/jag/823","DOIUrl":null,"url":null,"abstract":"We develop a framework to construct moduli spaces of \n\n \n \n \n Q\n \n \n {\\mathbb {Q}}\n \n\n-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of \n\n \n \n \n Q\n \n \n {\\mathbb {Q}}\n \n\n-stable pair. We show that these choices give a proper moduli space with projective coarse moduli space and they prevent some pathologies of the moduli space of stable pairs when the coefficients are smaller than \n\n \n \n 1\n 2\n \n \\frac {1}{2}\n \n\n. Lastly, we apply this machinery to provide an alternative proof of the projectivity of the moduli space of stable pairs.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Moduli of ℚ-Gorenstein pairs and applications\",\"authors\":\"Stefano Filipazzi, Giovanni Inchiostro\",\"doi\":\"10.1090/jag/823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a framework to construct moduli spaces of \\n\\n \\n \\n \\n Q\\n \\n \\n {\\\\mathbb {Q}}\\n \\n\\n-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of \\n\\n \\n \\n \\n Q\\n \\n \\n {\\\\mathbb {Q}}\\n \\n\\n-stable pair. We show that these choices give a proper moduli space with projective coarse moduli space and they prevent some pathologies of the moduli space of stable pairs when the coefficients are smaller than \\n\\n \\n \\n 1\\n 2\\n \\n \\\\frac {1}{2}\\n \\n\\n. Lastly, we apply this machinery to provide an alternative proof of the projectivity of the moduli space of stable pairs.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/823\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/823","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们建立了一个构建 Q {\mathbb {Q}} -戈伦斯坦对的模空间的框架。-戈伦斯坦对的模空间。为此,我们固定了某些不变式;这些选择被编码在 Q {\mathbb {Q}} -稳定对的概念中。-稳定对的概念。我们证明,这些选择给出了一个具有投影粗模态空间的适当模态空间,并且当系数小于 1 2 \frac {1}{2} 时,它们防止了稳定对模态空间的一些病态。最后,我们应用这个机制提供了稳定对的模空间的可投影性的另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli of ℚ-Gorenstein pairs and applications
We develop a framework to construct moduli spaces of Q {\mathbb {Q}} -Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q {\mathbb {Q}} -stable pair. We show that these choices give a proper moduli space with projective coarse moduli space and they prevent some pathologies of the moduli space of stable pairs when the coefficients are smaller than 1 2 \frac {1}{2} . Lastly, we apply this machinery to provide an alternative proof of the projectivity of the moduli space of stable pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信