非孤立超曲面奇点的非退化局部驯服完全交变与几何

IF 0.9 1区 数学 Q2 MATHEMATICS
C. Eyral, M. Oka
{"title":"非孤立超曲面奇点的非退化局部驯服完全交变与几何","authors":"C. Eyral, M. Oka","doi":"10.1090/jag/784","DOIUrl":null,"url":null,"abstract":"We give a criterion to test geometric properties such as Whitney equisingularity and Thom’s \n\n \n \n a\n f\n \n a_f\n \n\n condition for new families of (possibly nonisolated) hypersurface singularities that “behave well” with respect to their Newton diagrams. As an important corollary, we obtain that in such families all members have isomorphic Milnor fibrations.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nondegenerate locally tame complete intersection varieties and geometry of nonisolated hypersurface singularities\",\"authors\":\"C. Eyral, M. Oka\",\"doi\":\"10.1090/jag/784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a criterion to test geometric properties such as Whitney equisingularity and Thom’s \\n\\n \\n \\n a\\n f\\n \\n a_f\\n \\n\\n condition for new families of (possibly nonisolated) hypersurface singularities that “behave well” with respect to their Newton diagrams. As an important corollary, we obtain that in such families all members have isomorphic Milnor fibrations.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/784\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/784","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了一个标准来测试几何性质,如Whitney等奇异性和Thom的一个f - a_f条件,对于新的(可能是非孤立的)超曲面奇点族,“表现良好”相对于它们的牛顿图。作为一个重要的推论,我们得到在这些科中所有的成员都有同构的Milnor纤颤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondegenerate locally tame complete intersection varieties and geometry of nonisolated hypersurface singularities
We give a criterion to test geometric properties such as Whitney equisingularity and Thom’s a f a_f condition for new families of (possibly nonisolated) hypersurface singularities that “behave well” with respect to their Newton diagrams. As an important corollary, we obtain that in such families all members have isomorphic Milnor fibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信