{"title":"Foliations on Shimura varieties in positive characteristic","authors":"E. Goren, E. D. Shalit","doi":"10.1090/jag/820","DOIUrl":null,"url":null,"abstract":"<p>This paper is a continuation of a paper by de Shalit and Goren from 2018. We study foliations of two types on Shimura varieties <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\n <mml:semantics>\n <mml:mi>S</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The first, which we call <italic>tautological foliations</italic>, are defined on Hilbert modular varieties, and lift to characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\n <mml:semantics>\n <mml:mn>0</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The second, the <italic><inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-foliations</italic>, are defined on unitary Shimura varieties in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> only, and generalize the foliations studied by us before, when the CM field in question was quadratic imaginary. We determine when these foliations are <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-closed, and the locus where they are smooth. Where not smooth, we construct a <italic>successive blowup</italic> of our Shimura variety to which they extend as smooth foliations. We discuss some integral varieties of the foliations. We relate the quotient of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\n <mml:semantics>\n <mml:mi>S</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by the foliation to a purely inseparable map from a certain component of another Shimura variety of the same type, with parahoric level structure at <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S period\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S.</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula></p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/820","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is a continuation of a paper by de Shalit and Goren from 2018. We study foliations of two types on Shimura varieties SS in characteristic pp. The first, which we call tautological foliations, are defined on Hilbert modular varieties, and lift to characteristic 00. The second, the VV-foliations, are defined on unitary Shimura varieties in characteristic pp only, and generalize the foliations studied by us before, when the CM field in question was quadratic imaginary. We determine when these foliations are pp-closed, and the locus where they are smooth. Where not smooth, we construct a successive blowup of our Shimura variety to which they extend as smooth foliations. We discuss some integral varieties of the foliations. We relate the quotient of SS by the foliation to a purely inseparable map from a certain component of another Shimura variety of the same type, with parahoric level structure at pp, to S.S.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.