Journal of Algebraic Geometry最新文献

筛选
英文 中文
Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs 光滑del Pezzo对数Calabi-Yau对的热带对应关系
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-05-28 DOI: 10.1090/jag/794
Tim Graefnitz
{"title":"Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs","authors":"Tim Graefnitz","doi":"10.1090/jag/794","DOIUrl":"https://doi.org/10.1090/jag/794","url":null,"abstract":"<p>Consider a log Calabi-Yau pair <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper D right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(X,D)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> consisting of a smooth del Pezzo surface <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of degree <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than-or-equal-to 3\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">geq 3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and a smooth anticanonical divisor <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\u0000 <mml:semantics>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We prove a correspondence between genus zero logarithmic Gromov-Witten invariants of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> intersecting <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\u0000 <mml:semantics>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in a single point with maximal tangency and the consistent wall structure appearing in the dual intersection complex of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper D right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(X,D)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> from the Gross-Siebert reconstruction algorithm. More precisely, the logarithm of the product of functions attached to unbounded walls in the consistent wall structure gives a generati","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48480911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Global Prym-Torelli for double coverings ramified in at least six points 全球普瑞姆-托瑞利的双重覆盖至少延伸到六个点
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-05-22 DOI: 10.1090/jag/779
J. Naranjo, –. Ortega
{"title":"Global Prym-Torelli for double coverings ramified in at least six points","authors":"J. Naranjo, –. Ortega","doi":"10.1090/jag/779","DOIUrl":"https://doi.org/10.1090/jag/779","url":null,"abstract":"<p>We prove that the ramified Prym map <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript g comma r\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>r</mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal P_{g, r}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> which sends a covering <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper D long right-arrow upper C\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>π<!-- π --></mml:mi>\u0000 <mml:mo>:</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo>\u0000 <mml:mi>C</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">pi :Dlongrightarrow C</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> ramified in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\u0000 <mml:semantics>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> points to the Prym variety <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P left-parenthesis pi right-parenthesis colon-equal upper K e r left-parenthesis upper N m Subscript pi Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>P</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>π<!-- π --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>≔</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>e</mml:mi>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:msub>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>π<!-- π --></mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">P(pi )≔Ker(Nm_{pi })</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is an embedding for all <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r greater-than-or-equal-to 6\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>6</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">rge 6</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and for all <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g left-parenthesis upper C ri","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45359188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces 关于代数纤维空间的相对反规范除数的渐近基轨迹
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-05-10 DOI: 10.1090/jag/814
Sho Ejiri, M. Iwai, Shin-ichi Matsumura
{"title":"On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces","authors":"Sho Ejiri, M. Iwai, Shin-ichi Matsumura","doi":"10.1090/jag/814","DOIUrl":"https://doi.org/10.1090/jag/814","url":null,"abstract":"In this paper, we study the relative anti-canonical divisor \u0000\u0000 \u0000 \u0000 −\u0000 \u0000 K\u0000 \u0000 X\u0000 \u0000 /\u0000 \u0000 Y\u0000 \u0000 \u0000 \u0000 -K_{X/Y}\u0000 \u0000\u0000 of an algebraic fiber space \u0000\u0000 \u0000 \u0000 ϕ\u0000 :\u0000 X\u0000 →\u0000 Y\u0000 \u0000 phi colon Xto Y\u0000 \u0000\u0000, and we reveal relations among positivity conditions of \u0000\u0000 \u0000 \u0000 −\u0000 \u0000 K\u0000 \u0000 X\u0000 \u0000 /\u0000 \u0000 Y\u0000 \u0000 \u0000 \u0000 -K_{X/Y}\u0000 \u0000\u0000, certain flatness of direct image sheaves, and variants of the base loci including the stable (augmented, restricted) base loci and upper level sets of Lelong numbers. This paper contains three main results: The first result says that all the above base loci are located in the horizontal direction unless they are empty. The second result is an algebraic proof for Campana–Cao–Matsumura’s equality on Hacon–McKernan’s question, whose original proof depends on analytics methods. The third result proves that algebraic fiber spaces with semi-ample relative anti-canonical divisor actually have a product structure via the base change by an appropriate finite étale cover of \u0000\u0000 \u0000 Y\u0000 Y\u0000 \u0000\u0000. Our proof is based on algebraic as well as analytic methods for positivity of direct image sheaves.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45585372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Projective manifolds whose tangent bundle contains a strictly nef subsheaf 切丛包含严格nef子综的射影流形
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-04-18 DOI: 10.1090/jag/807
Jie Liu, Wenhao Ou, Xiaokui Yang
{"title":"Projective manifolds whose tangent bundle contains a strictly nef subsheaf","authors":"Jie Liu, Wenhao Ou, Xiaokui Yang","doi":"10.1090/jag/807","DOIUrl":"https://doi.org/10.1090/jag/807","url":null,"abstract":"<p>Suppose that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a projective manifold whose tangent bundle <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript upper X\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:mi>X</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">T_X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> contains a locally free strictly nef subsheaf. We prove that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is isomorphic to either a projective space or a projective bundle over a hyperbolic manifold of general type. Moreover, if the fundamental group <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi 1 left-parenthesis upper X right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>π<!-- π --></mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">pi _1(X)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is virtually solvable, then <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is isomorphic to a projective space.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43641826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
A codimension 2 component of the Gieseker-Petri locus Gieseker-Petri轨迹的余维2分量
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-02-24 DOI: 10.1090/jag/780
Margherita Lelli–Chiesa
{"title":"A codimension 2 component of the Gieseker-Petri locus","authors":"Margherita Lelli–Chiesa","doi":"10.1090/jag/780","DOIUrl":"https://doi.org/10.1090/jag/780","url":null,"abstract":"<p>We show that the Brill-Noether locus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Subscript 18 comma 16 Superscript 3\">\u0000 <mml:semantics>\u0000 <mml:msubsup>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>18</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>16</mml:mn>\u0000 </mml:mrow>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msubsup>\u0000 <mml:annotation encoding=\"application/x-tex\">M^3_{18,16}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is an irreducible component of the Gieseker-Petri locus in genus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"18\">\u0000 <mml:semantics>\u0000 <mml:mn>18</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">18</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> having codimension <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in the moduli space of curves. This result disproves a conjecture predicting that the Gieseker-Petri locus is always divisorial.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47940720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Codimension two integral points on some rationally connected threefolds are potentially dense 一些有理连通三重上的余维两个积分点是潜在稠密的
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-02-12 DOI: 10.1090/jag/782
David McKinnon, Mike Roth
{"title":"Codimension two integral points on some rationally connected threefolds are potentially dense","authors":"David McKinnon, Mike Roth","doi":"10.1090/jag/782","DOIUrl":"https://doi.org/10.1090/jag/782","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a smooth, projective, rationally connected variety, defined over a number field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\u0000 <mml:semantics>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, and let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z subset-of upper X\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:mo>⊂<!-- ⊂ --></mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Zsubset X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a closed subset of codimension at least two. In this paper, for certain choices of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, we prove that the set of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z\">\u0000 <mml:semantics>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Z</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-integral points is potentially Zariski dense, in the sense that there is a finite extension <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\u0000 <mml:semantics>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> such that the set of points <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P element-of upper X left-parenthesis upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>P</mml:mi>\u0000 <mml:mo>∈<!-- ∈ --></mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Pin X(K)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> that are <inline-formula content-type=\"math/mathml\">\u0000<mml:math x","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48063382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the monodromy group of desingularised moduli spaces of sheaves on K3 surfaces 关于K3表面上槽轮的去角模空间的单调群
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-02-10 DOI: 10.1090/jag/802
C. Onorati
{"title":"On the monodromy group of desingularised moduli spaces of sheaves on K3 surfaces","authors":"C. Onorati","doi":"10.1090/jag/802","DOIUrl":"https://doi.org/10.1090/jag/802","url":null,"abstract":"In this paper we prove a conjecture of Markman about the shape of the monodromy group of irreducible holomorphic symplectic manifolds of OG10 type. As a corollary, we also compute the locally trivial monodromy group of the underlying singular symplectic variety.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49367741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Bloch’s formula for 0-cycles with modulus and higher-dimensional class field theory 模0-环的Bloch公式与高维类场论
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2020-02-05 DOI: 10.1090/jag/792
F. Binda, A. Krishna, S. Saito
{"title":"Bloch’s formula for 0-cycles with modulus and higher-dimensional class field theory","authors":"F. Binda, A. Krishna, S. Saito","doi":"10.1090/jag/792","DOIUrl":"https://doi.org/10.1090/jag/792","url":null,"abstract":"<p>We prove Bloch’s formula for the Chow group of 0-cycles with modulus on a smooth quasi-projective surface over a field. We use this formula to give a simple proof of the rank one case of a conjecture of Deligne and Drinfeld on lisse <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q overbar Subscript script l\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mover>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\u0000 </mml:mover>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">overline {mathbb {Q}}_{ell }</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-sheaves. This was originally solved by Kerz and Saito in characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"not-equals 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo>≠<!-- ≠ --></mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">neq 2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44914700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Tropical floor plans and enumeration of complex and real multi-nodal surfaces 热带楼层平面图和复杂和真实多节点表面的列举
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2019-10-18 DOI: 10.1090/jag/774
H. Markwig, Thomas Markwig, Kristin M. Shaw, E. Shustin
{"title":"Tropical floor plans and enumeration of complex and real multi-nodal surfaces","authors":"H. Markwig, Thomas Markwig, Kristin M. Shaw, E. Shustin","doi":"10.1090/jag/774","DOIUrl":"https://doi.org/10.1090/jag/774","url":null,"abstract":"<p>The family of complex projective surfaces in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P cubed\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">P</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {P}^3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of degree <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\u0000 <mml:semantics>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> having precisely <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\">\u0000 <mml:semantics>\u0000 <mml:mi>δ<!-- δ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">delta</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> nodes as their only singularities has codimension <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\">\u0000 <mml:semantics>\u0000 <mml:mi>δ<!-- δ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">delta</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in the linear system <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue script upper O Subscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis EndAbsoluteValue\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">P</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">|{mathcal O}_{mathbb {P}^3}(d)|</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for sufficiently large <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\u0000 <mml:semantics>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\u0000 </mml:semantics>\u0000</mml:mat","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2019-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49598659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Eigenvalues and dynamical degrees of self-maps on abelian varieties 阿贝尔变种自映射的特征值和动力度
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2019-09-26 DOI: 10.1090/jag/806
Fei Hu
{"title":"Eigenvalues and dynamical degrees of self-maps on abelian varieties","authors":"Fei Hu","doi":"10.1090/jag/806","DOIUrl":"https://doi.org/10.1090/jag/806","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a smooth projective variety over an algebraically closed field, and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper X right-arrow upper X\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo>:<!-- : --></mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">fcolon Xto X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> a surjective self-morphism of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. The <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i\">\u0000 <mml:semantics>\u0000 <mml:mi>i</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">i</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-th cohomological dynamical degree <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi Subscript i Baseline left-parenthesis f right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>χ<!-- χ --></mml:mi>\u0000 <mml:mi>i</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">chi _i(f)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is defined as the spectral radius of the pullback <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f Superscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">f^{*}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> on the étale cohomology group <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript ModifyingAbove normal e With acute normal t Superscript i Baseline left-parenthesis upper X comma bold upper Q Subscript script l Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msubsup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:move","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46819321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信