{"title":"Gieseker-Petri轨迹的余维2分量","authors":"Margherita Lelli–Chiesa","doi":"10.1090/jag/780","DOIUrl":null,"url":null,"abstract":"<p>We show that the Brill-Noether locus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Subscript 18 comma 16 Superscript 3\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>M</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>18</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>16</mml:mn>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">M^3_{18,16}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an irreducible component of the Gieseker-Petri locus in genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"18\">\n <mml:semantics>\n <mml:mn>18</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">18</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> having codimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the moduli space of curves. This result disproves a conjecture predicting that the Gieseker-Petri locus is always divisorial.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A codimension 2 component of the Gieseker-Petri locus\",\"authors\":\"Margherita Lelli–Chiesa\",\"doi\":\"10.1090/jag/780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the Brill-Noether locus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M Subscript 18 comma 16 Superscript 3\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mi>M</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>18</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>16</mml:mn>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M^3_{18,16}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an irreducible component of the Gieseker-Petri locus in genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"18\\\">\\n <mml:semantics>\\n <mml:mn>18</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">18</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> having codimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the moduli space of curves. This result disproves a conjecture predicting that the Gieseker-Petri locus is always divisorial.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/780\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/780","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A codimension 2 component of the Gieseker-Petri locus
We show that the Brill-Noether locus M18,163M^3_{18,16} is an irreducible component of the Gieseker-Petri locus in genus 1818 having codimension 22 in the moduli space of curves. This result disproves a conjecture predicting that the Gieseker-Petri locus is always divisorial.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.