H. Markwig, Thomas Markwig, Kristin M. Shaw, E. Shustin
求助PDF
{"title":"热带楼层平面图和复杂和真实多节点表面的列举","authors":"H. Markwig, Thomas Markwig, Kristin M. Shaw, E. Shustin","doi":"10.1090/jag/774","DOIUrl":null,"url":null,"abstract":"<p>The family of complex projective surfaces in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> having precisely <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\">\n <mml:semantics>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> nodes as their only singularities has codimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\">\n <mml:semantics>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the linear system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue script upper O Subscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|{\\mathcal O}_{\\mathbb {P}^3}(d)|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for sufficiently large <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and is of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript delta comma double-struck upper C Superscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis equals left-parenthesis 4 left-parenthesis d minus 1 right-parenthesis cubed right-parenthesis Superscript delta Baseline slash delta factorial plus upper O left-parenthesis d Superscript 3 delta minus 3 Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>N</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>4</mml:mn>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>!</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>d</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>3</mml:mn>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N_{\\delta ,\\mathbb {C}}^{\\mathbb {P}^3}(d)=(4(d-1)^3)^\\delta /\\delta !+O(d^{3\\delta -3})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In particular, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript delta comma double-struck upper C Superscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>N</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N_{\\delta ,\\mathbb {C}}^{\\mathbb {P}^3}(d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is polynomial in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>By means of tropical geometry, we explicitly describe <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 4 d cubed right-parenthesis Superscript delta Baseline slash delta factorial plus upper O left-parenthesis d Superscript 3 delta minus 1 Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>4</mml:mn>\n <mml:msup>\n <mml:mi>d</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>!</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>d</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>3</mml:mn>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(4d^3)^\\delta /\\delta !+O(d^{3\\delta -1})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> surfaces passing through a suitable generic configuration of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals StartBinomialOrMatrix d plus 3 Choose 3 EndBinomialOrMatrix minus delta minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mrow>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-OPEN\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mfrac linethickness=\"0\">\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-CLOSE\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n=\\binom {d+3}{3}-\\delta -1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> points in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^3</mml:annotation>\n </mm","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tropical floor plans and enumeration of complex and real multi-nodal surfaces\",\"authors\":\"H. Markwig, Thomas Markwig, Kristin M. Shaw, E. Shustin\",\"doi\":\"10.1090/jag/774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The family of complex projective surfaces in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P cubed\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> having precisely <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta\\\">\\n <mml:semantics>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> nodes as their only singularities has codimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta\\\">\\n <mml:semantics>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the linear system <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue script upper O Subscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis EndAbsoluteValue\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">O</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>d</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">|{\\\\mathcal O}_{\\\\mathbb {P}^3}(d)|</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for sufficiently large <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and is of degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N Subscript delta comma double-struck upper C Superscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis equals left-parenthesis 4 left-parenthesis d minus 1 right-parenthesis cubed right-parenthesis Superscript delta Baseline slash delta factorial plus upper O left-parenthesis d Superscript 3 delta minus 3 Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>N</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>d</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>4</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>d</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n </mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>!</mml:mo>\\n <mml:mo>+</mml:mo>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>d</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>3</mml:mn>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N_{\\\\delta ,\\\\mathbb {C}}^{\\\\mathbb {P}^3}(d)=(4(d-1)^3)^\\\\delta /\\\\delta !+O(d^{3\\\\delta -3})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In particular, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N Subscript delta comma double-struck upper C Superscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>N</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>d</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N_{\\\\delta ,\\\\mathbb {C}}^{\\\\mathbb {P}^3}(d)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is polynomial in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\\n\\n<p>By means of tropical geometry, we explicitly describe <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 4 d cubed right-parenthesis Superscript delta Baseline slash delta factorial plus upper O left-parenthesis d Superscript 3 delta minus 1 Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>4</mml:mn>\\n <mml:msup>\\n <mml:mi>d</mml:mi>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n </mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>!</mml:mo>\\n <mml:mo>+</mml:mo>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>d</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>3</mml:mn>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(4d^3)^\\\\delta /\\\\delta !+O(d^{3\\\\delta -1})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> surfaces passing through a suitable generic configuration of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n equals StartBinomialOrMatrix d plus 3 Choose 3 EndBinomialOrMatrix minus delta minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mrow>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-OPEN\\\">\\n <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n <mml:mfrac linethickness=\\\"0\\\">\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:mfrac>\\n <mml:mstyle scriptlevel=\\\"0\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-CLOSE\\\">\\n <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mstyle>\\n </mml:mrow>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n=\\\\binom {d+3}{3}-\\\\delta -1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> points in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P cubed\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^3</mml:annotation>\\n </mm\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/774\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/774","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
引用
批量引用