{"title":"Extension of cohomology classes and holomorphic sections defined on subvarieties","authors":"Xiangyu Zhou, Langfeng Zhu","doi":"10.1090/JAG/766","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain two extension theorems for cohomology classes and holomorphic sections defined on analytic subvarieties, which are defined as the supports of the quotient sheaves of multiplier ideal sheaves of quasi-plurisubharmonic functions with arbitrary singularities. The first result gives a positive answer to a question posed by Cao-Demailly-Matsumura and unifies a few well-known injectivity theorems. The second result generalizes and optimizes a general \n\n \n \n L\n 2\n \n L^2\n \n\n extension theorem obtained by Demailly.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/766","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we obtain two extension theorems for cohomology classes and holomorphic sections defined on analytic subvarieties, which are defined as the supports of the quotient sheaves of multiplier ideal sheaves of quasi-plurisubharmonic functions with arbitrary singularities. The first result gives a positive answer to a question posed by Cao-Demailly-Matsumura and unifies a few well-known injectivity theorems. The second result generalizes and optimizes a general
L
2
L^2
extension theorem obtained by Demailly.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.