{"title":"Scattering diagrams, stability conditions, and coherent sheaves on ℙ²","authors":"Pierrick Bousseau","doi":"10.1090/jag/795","DOIUrl":null,"url":null,"abstract":"<p>We show that a purely algebraic structure, a two-dimensional scattering diagram, describes a large part of the wall-crossing behavior of moduli spaces of Bridgeland semistable objects in the derived category of coherent sheaves on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This gives a new algorithm computing the Hodge numbers of the intersection cohomology of the classical moduli spaces of Gieseker semistable sheaves on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or equivalently the refined Donaldson-Thomas invariants for compactly supported sheaves on local <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>As applications, we prove that the intersection cohomology of moduli spaces of Gieseker semistable sheaves on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is Hodge-Tate, and we give the first non-trivial numerical checks of the general <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi\">\n <mml:semantics>\n <mml:mi>χ<!-- χ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\chi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-independence conjecture for refined Donaldson-Thomas invariants of one-dimensional sheaves on local <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/795","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 31
Abstract
We show that a purely algebraic structure, a two-dimensional scattering diagram, describes a large part of the wall-crossing behavior of moduli spaces of Bridgeland semistable objects in the derived category of coherent sheaves on P2\mathbb {P}^2. This gives a new algorithm computing the Hodge numbers of the intersection cohomology of the classical moduli spaces of Gieseker semistable sheaves on P2\mathbb {P}^2, or equivalently the refined Donaldson-Thomas invariants for compactly supported sheaves on local P2\mathbb {P}^2.
As applications, we prove that the intersection cohomology of moduli spaces of Gieseker semistable sheaves on P2\mathbb {P}^2 is Hodge-Tate, and we give the first non-trivial numerical checks of the general χ\chi-independence conjecture for refined Donaldson-Thomas invariants of one-dimensional sheaves on local P2\mathbb {P}^2.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.