Tropical floor plans and enumeration of complex and real multi-nodal surfaces

IF 0.9 1区 数学 Q2 MATHEMATICS
H. Markwig, Thomas Markwig, Kristin M. Shaw, E. Shustin
{"title":"Tropical floor plans and enumeration of complex and real multi-nodal surfaces","authors":"H. Markwig, Thomas Markwig, Kristin M. Shaw, E. Shustin","doi":"10.1090/jag/774","DOIUrl":null,"url":null,"abstract":"<p>The family of complex projective surfaces in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> having precisely <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\">\n <mml:semantics>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> nodes as their only singularities has codimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta\">\n <mml:semantics>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the linear system <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue script upper O Subscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|{\\mathcal O}_{\\mathbb {P}^3}(d)|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for sufficiently large <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and is of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript delta comma double-struck upper C Superscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis equals left-parenthesis 4 left-parenthesis d minus 1 right-parenthesis cubed right-parenthesis Superscript delta Baseline slash delta factorial plus upper O left-parenthesis d Superscript 3 delta minus 3 Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>N</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>4</mml:mn>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>!</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>d</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>3</mml:mn>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N_{\\delta ,\\mathbb {C}}^{\\mathbb {P}^3}(d)=(4(d-1)^3)^\\delta /\\delta !+O(d^{3\\delta -3})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In particular, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript delta comma double-struck upper C Superscript double-struck upper P cubed Baseline left-parenthesis d right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>N</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N_{\\delta ,\\mathbb {C}}^{\\mathbb {P}^3}(d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is polynomial in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>By means of tropical geometry, we explicitly describe <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 4 d cubed right-parenthesis Superscript delta Baseline slash delta factorial plus upper O left-parenthesis d Superscript 3 delta minus 1 Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>4</mml:mn>\n <mml:msup>\n <mml:mi>d</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>!</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>d</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>3</mml:mn>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(4d^3)^\\delta /\\delta !+O(d^{3\\delta -1})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> surfaces passing through a suitable generic configuration of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals StartBinomialOrMatrix d plus 3 Choose 3 EndBinomialOrMatrix minus delta minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mrow>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-OPEN\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mfrac linethickness=\"0\">\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-CLOSE\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n=\\binom {d+3}{3}-\\delta -1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> points in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^3</mml:annotation>\n </mm","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/774","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The family of complex projective surfaces in P 3 \mathbb {P}^3 of degree d d having precisely δ \delta nodes as their only singularities has codimension δ \delta in the linear system | O P 3 ( d ) | |{\mathcal O}_{\mathbb {P}^3}(d)| for sufficiently large d d and is of degree N δ , C P 3 ( d ) = ( 4 ( d 1 ) 3 ) δ / δ ! + O ( d 3 δ 3 ) N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d)=(4(d-1)^3)^\delta /\delta !+O(d^{3\delta -3}) . In particular, N δ , C P 3 ( d ) N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d) is polynomial in d d .

By means of tropical geometry, we explicitly describe ( 4 d 3 ) δ / δ ! + O ( d 3 δ 1 ) (4d^3)^\delta /\delta !+O(d^{3\delta -1}) surfaces passing through a suitable generic configuration of n = ( d + 3 3 ) δ 1 n=\binom {d+3}{3}-\delta -1 points in P 3 \mathbb {P}^3

热带楼层平面图和复杂和真实多节点表面的列举
在线性系统|O P中,具有精确的δδ节点作为其唯一奇点的P3\mathbb{P}^3中的复射影曲面族具有余维δ3(d)||{\mathcal O}_{\mathbb{P}^3}(d)|,C P 3(d)=(4(d−1)3)δ/δ!+O(d3δ−3)N_{\delta,\mathbb{C}}^{\mathbb{P}^3}(d)=(4(d-1)^3)^\ delta/\delta+O(d^{3\Δ-3})。特别地,Nδ,C P3(d)N_{\delta,\mathbb{C}}^{\mathbb{P}^3}(d)是d d中的多项式,我们明确地描述了(4d3)δ/δ!+O(d3δ−1)(4d^3)^\delta/\delta+O(d^{3\delta-1})表面穿过n=(d+3 3)−δ−1 n=\binom{d+3}的合适的一般构型{3}-\P 3\mathbb{P}^3中的delta-1点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信