求助PDF
{"title":"阿贝尔变种自映射的特征值和动力度","authors":"Fei Hu","doi":"10.1090/jag/806","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a smooth projective variety over an algebraically closed field, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper X right-arrow upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f\\colon X\\to X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> a surjective self-morphism of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i\">\n <mml:semantics>\n <mml:mi>i</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-th cohomological dynamical degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi Subscript i Baseline left-parenthesis f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>χ<!-- χ --></mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\chi _i(f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is defined as the spectral radius of the pullback <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>f</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">f^{*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on the étale cohomology group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript ModifyingAbove normal e With acute normal t Superscript i Baseline left-parenthesis upper X comma bold upper Q Subscript script l Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n </mml:mrow>\n <mml:mo>´<!-- ´ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">t</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mi>i</mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">Q</mml:mi>\n </mml:mrow>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^i_{\\acute {\\mathrm {e}}\\mathrm {t}}(X, \\mathbf {Q}_\\ell )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-th numerical dynamical degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda Subscript k Baseline left-parenthesis f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _k(f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as the spectral radius of the pullback <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>f</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">f^{*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on the vector space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper N Superscript k Baseline left-parenthesis upper X right-parenthesis Subscript bold upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">N</mml:mi>\n </mml:mrow>\n <mml:mi>k</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {N}^k(X)_{\\mathbf {R}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of real algebraic cycles of codimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> modulo numerical equivalence. Truong conjectured that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi Subscript 2 k Baseline left-parenthesis f right-parenthesis equals lamda Subscript k Baseline left-parenthesis f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>χ<!-- χ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>k</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\chi _{2k}(f) = \\lambda _k(f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 less-than-or-equal-to k less-than-or-equal-to dimension upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>dim</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 \\le k \\le \\dim X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as a generalization of Weil’s Riemann hypothesis. We prove this conjecture in the case of abelian varieties. In the course of the proof we also obtain a new parity result on the eigenvalues of self-maps of abelian varieties in prime characteristic, which is of independent interest.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Eigenvalues and dynamical degrees of self-maps on abelian varieties\",\"authors\":\"Fei Hu\",\"doi\":\"10.1090/jag/806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a smooth projective variety over an algebraically closed field, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f colon upper X right-arrow upper X\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>f</mml:mi>\\n <mml:mo>:<!-- : --></mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi>X</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f\\\\colon X\\\\to X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> a surjective self-morphism of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"i\\\">\\n <mml:semantics>\\n <mml:mi>i</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">i</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-th cohomological dynamical degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"chi Subscript i Baseline left-parenthesis f right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>χ<!-- χ --></mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\chi _i(f)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is defined as the spectral radius of the pullback <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f Superscript asterisk\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>f</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f^{*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on the étale cohomology group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Subscript ModifyingAbove normal e With acute normal t Superscript i Baseline left-parenthesis upper X comma bold upper Q Subscript script l Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>H</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">e</mml:mi>\\n </mml:mrow>\\n <mml:mo>´<!-- ´ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">t</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mi>i</mml:mi>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^i_{\\\\acute {\\\\mathrm {e}}\\\\mathrm {t}}(X, \\\\mathbf {Q}_\\\\ell )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-th numerical dynamical degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda Subscript k Baseline left-parenthesis f right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mi>k</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda _k(f)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> as the spectral radius of the pullback <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f Superscript asterisk\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>f</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f^{*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on the vector space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif upper N Superscript k Baseline left-parenthesis upper X right-parenthesis Subscript bold upper R\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:mi>k</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {N}^k(X)_{\\\\mathbf {R}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of real algebraic cycles of codimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> modulo numerical equivalence. Truong conjectured that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"chi Subscript 2 k Baseline left-parenthesis f right-parenthesis equals lamda Subscript k Baseline left-parenthesis f right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>χ<!-- χ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>k</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mi>k</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\chi _{2k}(f) = \\\\lambda _k(f)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for all <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 less-than-or-equal-to k less-than-or-equal-to dimension upper X\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>k</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>dim</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>X</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0 \\\\le k \\\\le \\\\dim X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> as a generalization of Weil’s Riemann hypothesis. We prove this conjecture in the case of abelian varieties. In the course of the proof we also obtain a new parity result on the eigenvalues of self-maps of abelian varieties in prime characteristic, which is of independent interest.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/806\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/806","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
引用
批量引用