{"title":"Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds","authors":"Chen Jiang","doi":"10.1090/jag/798","DOIUrl":null,"url":null,"abstract":"<p>For a hyperkähler manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, Huybrechts showed that there are constants <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 0\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, …, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a Subscript 2 n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">a_{2n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi left-parenthesis upper L right-parenthesis equals sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Subscript upper X Baseline left-parenthesis c 1 left-parenthesis upper L right-parenthesis right-parenthesis Superscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>χ<!-- χ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:munderover>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:munderover>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>!</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:msub>\n <mml:mi>q</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\chi (L) =\\sum _{i=0}^n\\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n for any line bundle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q Subscript upper X\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>q</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">q_X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the Beauville–Bogomolov–Fujiki quadratic form of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Here the polynomial <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript i equals 0 Overscript n Endscripts StartFraction a Subscript 2 i Baseline Over left-parenthesis 2 i right-parenthesis factorial EndFraction q Superscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:munderover>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:munderover>\n <mml:mfrac>\n <mml:msub>\n <mml:mi>a</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>i</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>!</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:msup>\n <mml:mi>q</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\sum _{i=0}^n\\frac {a_{2i}}{(2i)!}q^{i}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is called the Riemann–Roch polynomial of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>In this paper, we show that all coefficients of the Riemann–Roch polynomial of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.</p>\n\n<p>In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal t normal d Superscript 1 slash 2 Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">t</mml:mi>\n <mml:mi mathvariant=\"normal\">d</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {td}^{1/2}(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the root of the Todd genus of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/798","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
For a hyperkähler manifold XX of dimension 2n2n, Huybrechts showed that there are constants a0a_0, a2a_2, …, a2na_{2n} such that χ(L)=∑i=0na2i(2i)!qX(c1(L))i\begin{equation*} \chi (L) =\sum _{i=0}^n\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \end{equation*}
for any line bundle LL on XX, where qXq_X is the Beauville–Bogomolov–Fujiki quadratic form of XX. Here the polynomial ∑i=0na2i(2i)!qi\sum _{i=0}^n\frac {a_{2i}}{(2i)!}q^{i} is called the Riemann–Roch polynomial of XX.
In this paper, we show that all coefficients of the Riemann–Roch polynomial of XX are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.
In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of td1/2(X)\mathrm {td}^{1/2}(X), the root of the Todd genus of XX, via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.