Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs

IF 0.9 1区 数学 Q2 MATHEMATICS
Tim Graefnitz
{"title":"Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs","authors":"Tim Graefnitz","doi":"10.1090/jag/794","DOIUrl":null,"url":null,"abstract":"<p>Consider a log Calabi-Yau pair <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper D right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(X,D)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> consisting of a smooth del Pezzo surface <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than-or-equal-to 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\geq 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a smooth anticanonical divisor <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\n <mml:semantics>\n <mml:mi>D</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We prove a correspondence between genus zero logarithmic Gromov-Witten invariants of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> intersecting <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\n <mml:semantics>\n <mml:mi>D</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in a single point with maximal tangency and the consistent wall structure appearing in the dual intersection complex of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper D right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(X,D)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> from the Gross-Siebert reconstruction algorithm. More precisely, the logarithm of the product of functions attached to unbounded walls in the consistent wall structure gives a generating function for these invariants.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/794","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

Abstract

Consider a log Calabi-Yau pair ( X , D ) (X,D) consisting of a smooth del Pezzo surface X X of degree 3 \geq 3 and a smooth anticanonical divisor D D . We prove a correspondence between genus zero logarithmic Gromov-Witten invariants of X X intersecting D D in a single point with maximal tangency and the consistent wall structure appearing in the dual intersection complex of ( X , D ) (X,D) from the Gross-Siebert reconstruction algorithm. More precisely, the logarithm of the product of functions attached to unbounded walls in the consistent wall structure gives a generating function for these invariants.

光滑del Pezzo对数Calabi-Yau对的热带对应关系
考虑一个对数Calabi-Yau对(X,D)(X,D),它由一个≥3次的光滑del Pezzo表面X和一个光滑反正则除数D组成。我们从Gross-Sibert重建算法中证明了在具有最大切点的单点上与D相交的X X的亏格零对数Gromov-Witten不变量与(X,D)(X,D)的对偶交复数中出现的一致壁结构之间的对应关系。更准确地说,在一致墙结构中,附加到无界墙的函数的乘积的对数给出了这些不变量的生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信