{"title":"Global Prym-Torelli for double coverings ramified in at least six points","authors":"J. Naranjo, –. Ortega","doi":"10.1090/jag/779","DOIUrl":null,"url":null,"abstract":"<p>We prove that the ramified Prym map <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript g comma r\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal P_{g, r}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which sends a covering <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper D long right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\pi :D\\longrightarrow C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> ramified in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> points to the Prym variety <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P left-parenthesis pi right-parenthesis colon-equal upper K e r left-parenthesis upper N m Subscript pi Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>P</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mi>K</mml:mi>\n <mml:mi>e</mml:mi>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>π<!-- π --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">P(\\pi )≔Ker(Nm_{\\pi })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an embedding for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r greater-than-or-equal-to 6\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>6</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">r\\ge 6</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g left-parenthesis upper C right-parenthesis greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g(C)>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover, by studying the restriction to the locus of coverings of hyperelliptic curves, we show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript g comma 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal P_{g, 2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript g comma 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal P_{g, 4}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> have positive dimensional fibers.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/779","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
We prove that the ramified Prym map Pg,r\mathcal P_{g, r} which sends a covering π:D⟶C\pi :D\longrightarrow C ramified in rr points to the Prym variety P(π)≔Ker(Nmπ)P(\pi )≔Ker(Nm_{\pi }) is an embedding for all r≥6r\ge 6 and for all g(C)>0g(C)>0. Moreover, by studying the restriction to the locus of coverings of hyperelliptic curves, we show that Pg,2\mathcal P_{g, 2} and Pg,4\mathcal P_{g, 4} have positive dimensional fibers.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.