关于代数纤维空间的相对反规范除数的渐近基轨迹

IF 0.9 1区 数学 Q2 MATHEMATICS
Sho Ejiri, M. Iwai, Shin-ichi Matsumura
{"title":"关于代数纤维空间的相对反规范除数的渐近基轨迹","authors":"Sho Ejiri, M. Iwai, Shin-ichi Matsumura","doi":"10.1090/jag/814","DOIUrl":null,"url":null,"abstract":"In this paper, we study the relative anti-canonical divisor \n\n \n \n −\n \n K\n \n X\n \n /\n \n Y\n \n \n \n -K_{X/Y}\n \n\n of an algebraic fiber space \n\n \n \n ϕ\n :\n X\n →\n Y\n \n \\phi \\colon X\\to Y\n \n\n, and we reveal relations among positivity conditions of \n\n \n \n −\n \n K\n \n X\n \n /\n \n Y\n \n \n \n -K_{X/Y}\n \n\n, certain flatness of direct image sheaves, and variants of the base loci including the stable (augmented, restricted) base loci and upper level sets of Lelong numbers. This paper contains three main results: The first result says that all the above base loci are located in the horizontal direction unless they are empty. The second result is an algebraic proof for Campana–Cao–Matsumura’s equality on Hacon–McKernan’s question, whose original proof depends on analytics methods. The third result proves that algebraic fiber spaces with semi-ample relative anti-canonical divisor actually have a product structure via the base change by an appropriate finite étale cover of \n\n \n Y\n Y\n \n\n. Our proof is based on algebraic as well as analytic methods for positivity of direct image sheaves.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces\",\"authors\":\"Sho Ejiri, M. Iwai, Shin-ichi Matsumura\",\"doi\":\"10.1090/jag/814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the relative anti-canonical divisor \\n\\n \\n \\n −\\n \\n K\\n \\n X\\n \\n /\\n \\n Y\\n \\n \\n \\n -K_{X/Y}\\n \\n\\n of an algebraic fiber space \\n\\n \\n \\n ϕ\\n :\\n X\\n →\\n Y\\n \\n \\\\phi \\\\colon X\\\\to Y\\n \\n\\n, and we reveal relations among positivity conditions of \\n\\n \\n \\n −\\n \\n K\\n \\n X\\n \\n /\\n \\n Y\\n \\n \\n \\n -K_{X/Y}\\n \\n\\n, certain flatness of direct image sheaves, and variants of the base loci including the stable (augmented, restricted) base loci and upper level sets of Lelong numbers. This paper contains three main results: The first result says that all the above base loci are located in the horizontal direction unless they are empty. The second result is an algebraic proof for Campana–Cao–Matsumura’s equality on Hacon–McKernan’s question, whose original proof depends on analytics methods. The third result proves that algebraic fiber spaces with semi-ample relative anti-canonical divisor actually have a product structure via the base change by an appropriate finite étale cover of \\n\\n \\n Y\\n Y\\n \\n\\n. Our proof is based on algebraic as well as analytic methods for positivity of direct image sheaves.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/814\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/814","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们研究了代数纤维空间的相对反正则因子−KX/Y-K_{X/Y}→ 并且我们揭示了−KX/Y-K_{X/Y}的正性条件、直像槽的某些平坦性以及包括稳定(增广、限制)碱基位点和Lelong数的上级集在内的碱基位点的变体之间的关系。本文包含三个主要结果:第一个结果表明,所有上述碱基位点都位于水平方向,除非它们是空的。第二个结果是Campana–Cao–Matsumura关于Hacon–McKernan问题的等式的代数证明,其原始证明依赖于分析方法。第三个结果证明了具有半充分相对反规范除数的代数纤维空间实际上具有通过Y Y的适当有限元覆盖的基变化的乘积结构。我们的证明是基于代数以及直接图像滑轮的正性的分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces
In this paper, we study the relative anti-canonical divisor − K X / Y -K_{X/Y} of an algebraic fiber space ϕ : X → Y \phi \colon X\to Y , and we reveal relations among positivity conditions of − K X / Y -K_{X/Y} , certain flatness of direct image sheaves, and variants of the base loci including the stable (augmented, restricted) base loci and upper level sets of Lelong numbers. This paper contains three main results: The first result says that all the above base loci are located in the horizontal direction unless they are empty. The second result is an algebraic proof for Campana–Cao–Matsumura’s equality on Hacon–McKernan’s question, whose original proof depends on analytics methods. The third result proves that algebraic fiber spaces with semi-ample relative anti-canonical divisor actually have a product structure via the base change by an appropriate finite étale cover of Y Y . Our proof is based on algebraic as well as analytic methods for positivity of direct image sheaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信