klt空间上的射影平坦性和具有nef反正则除数的变异的均匀化

IF 0.9 1区 数学 Q2 MATHEMATICS
D. Greb, Stefan Kebekus, T. Peternell
{"title":"klt空间上的射影平坦性和具有nef反正则除数的变异的均匀化","authors":"D. Greb, Stefan Kebekus, T. Peternell","doi":"10.1090/jag/785","DOIUrl":null,"url":null,"abstract":"We give a criterion for the projectivisation of a reflexive sheaf on a klt space to be induced by a projective representation of the fundamental group of the smooth locus. This criterion is then applied to give a characterisation of finite quotients of projective spaces and Abelian varieties by \n\n \n \n Q\n \n \\mathbb {Q}\n \n\n-Chern class (in)equalities and a suitable stability condition. This stability condition is formulated in terms of a naturally defined extension of the tangent sheaf by the structure sheaf. We further examine cases in which this stability condition is satisfied, comparing it to K-semistability and related notions.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor\",\"authors\":\"D. Greb, Stefan Kebekus, T. Peternell\",\"doi\":\"10.1090/jag/785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a criterion for the projectivisation of a reflexive sheaf on a klt space to be induced by a projective representation of the fundamental group of the smooth locus. This criterion is then applied to give a characterisation of finite quotients of projective spaces and Abelian varieties by \\n\\n \\n \\n Q\\n \\n \\\\mathbb {Q}\\n \\n\\n-Chern class (in)equalities and a suitable stability condition. This stability condition is formulated in terms of a naturally defined extension of the tangent sheaf by the structure sheaf. We further examine cases in which this stability condition is satisfied, comparing it to K-semistability and related notions.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/785\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/785","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

我们给出了由光滑轨迹基群的射影表示导出的klt空间上自反轴的射影的一个判据。然后应用这一判据,用Q \mathbb {Q} -Chern类(in)等式给出了投影空间和阿贝尔变的有限商的一个刻画,并给出了一个合适的稳定性条件。这种稳定性条件是根据结构轴对切线轴的自然定义的延伸来表述的。我们进一步研究了这种稳定性条件满足的情况,并将其与k -半不稳定性和相关概念进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor
We give a criterion for the projectivisation of a reflexive sheaf on a klt space to be induced by a projective representation of the fundamental group of the smooth locus. This criterion is then applied to give a characterisation of finite quotients of projective spaces and Abelian varieties by Q \mathbb {Q} -Chern class (in)equalities and a suitable stability condition. This stability condition is formulated in terms of a naturally defined extension of the tangent sheaf by the structure sheaf. We further examine cases in which this stability condition is satisfied, comparing it to K-semistability and related notions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信