局部体积的ACC和奇点的有界性

IF 0.9 1区 数学 Q2 MATHEMATICS
Jingjun Han, Yuchen Liu, Lu Qi
{"title":"局部体积的ACC和奇点的有界性","authors":"Jingjun Han, Yuchen Liu, Lu Qi","doi":"10.1090/jag/799","DOIUrl":null,"url":null,"abstract":"The ascending chain condition (ACC) conjecture for local volumes predicts that the set of local volumes of Kawamata log terminal (klt) singularities \n\n \n \n x\n ∈\n (\n X\n ,\n Δ\n )\n \n x\\in (X,\\Delta )\n \n\n satisfies the ACC if the coefficients of \n\n \n Δ\n \\Delta\n \n\n belong to a descending chain condition (DCC) set. In this paper, we prove the ACC conjecture for local volumes under the assumption that the ambient germ is analytically bounded. We introduce another related conjecture, which predicts the existence of \n\n \n δ\n \\delta\n \n\n-plt blow-ups of a klt singularity whose local volume has a positive lower bound. We show that the latter conjecture also holds when the ambient germ is analytically bounded. Moreover, we prove that both conjectures hold in dimension 2 as well as for 3-dimensional terminal singularities.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"ACC for local volumes and boundedness of singularities\",\"authors\":\"Jingjun Han, Yuchen Liu, Lu Qi\",\"doi\":\"10.1090/jag/799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ascending chain condition (ACC) conjecture for local volumes predicts that the set of local volumes of Kawamata log terminal (klt) singularities \\n\\n \\n \\n x\\n ∈\\n (\\n X\\n ,\\n Δ\\n )\\n \\n x\\\\in (X,\\\\Delta )\\n \\n\\n satisfies the ACC if the coefficients of \\n\\n \\n Δ\\n \\\\Delta\\n \\n\\n belong to a descending chain condition (DCC) set. In this paper, we prove the ACC conjecture for local volumes under the assumption that the ambient germ is analytically bounded. We introduce another related conjecture, which predicts the existence of \\n\\n \\n δ\\n \\\\delta\\n \\n\\n-plt blow-ups of a klt singularity whose local volume has a positive lower bound. We show that the latter conjecture also holds when the ambient germ is analytically bounded. Moreover, we prove that both conjectures hold in dimension 2 as well as for 3-dimensional terminal singularities.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/799\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/799","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

局部体积的升链条件(ACC)猜想预测,如果Δ\Delta的系数属于降链条件(DCC)集,则Kawamata对数终端(klt)奇点x∈(x,Δ)x\in(x,\Delta)的局部体积集满足ACC。在本文中,我们在假设环境芽是解析有界的情况下,证明了局部体积的ACC猜想。我们引入了另一个相关的猜想,该猜想预测了局部体积具有正下界的klt奇异点的δδ-plt爆破的存在。我们证明,当环境胚是解析有界的时,后一个猜想也成立。此外,我们证明了这两个猜想在维度2以及三维终端奇点中都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ACC for local volumes and boundedness of singularities
The ascending chain condition (ACC) conjecture for local volumes predicts that the set of local volumes of Kawamata log terminal (klt) singularities x ∈ ( X , Δ ) x\in (X,\Delta ) satisfies the ACC if the coefficients of Δ \Delta belong to a descending chain condition (DCC) set. In this paper, we prove the ACC conjecture for local volumes under the assumption that the ambient germ is analytically bounded. We introduce another related conjecture, which predicts the existence of δ \delta -plt blow-ups of a klt singularity whose local volume has a positive lower bound. We show that the latter conjecture also holds when the ambient germ is analytically bounded. Moreover, we prove that both conjectures hold in dimension 2 as well as for 3-dimensional terminal singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信