全球普瑞姆-托瑞利的双重覆盖至少延伸到六个点

IF 0.9 1区 数学 Q2 MATHEMATICS
J. Naranjo, –. Ortega
{"title":"全球普瑞姆-托瑞利的双重覆盖至少延伸到六个点","authors":"J. Naranjo, –. Ortega","doi":"10.1090/jag/779","DOIUrl":null,"url":null,"abstract":"<p>We prove that the ramified Prym map <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript g comma r\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal P_{g, r}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which sends a covering <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper D long right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\pi :D\\longrightarrow C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> ramified in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> points to the Prym variety <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P left-parenthesis pi right-parenthesis colon-equal upper K e r left-parenthesis upper N m Subscript pi Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>P</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mi>K</mml:mi>\n <mml:mi>e</mml:mi>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>π<!-- π --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">P(\\pi )≔Ker(Nm_{\\pi })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an embedding for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r greater-than-or-equal-to 6\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>6</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">r\\ge 6</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g left-parenthesis upper C right-parenthesis greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g(C)>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover, by studying the restriction to the locus of coverings of hyperelliptic curves, we show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript g comma 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal P_{g, 2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript g comma 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal P_{g, 4}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> have positive dimensional fibers.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Global Prym-Torelli for double coverings ramified in at least six points\",\"authors\":\"J. Naranjo, –. Ortega\",\"doi\":\"10.1090/jag/779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the ramified Prym map <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper P Subscript g comma r\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>g</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>r</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal P_{g, r}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> which sends a covering <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi colon upper D long right-arrow upper C\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>π<!-- π --></mml:mi>\\n <mml:mo>:</mml:mo>\\n <mml:mi>D</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">⟶<!-- ⟶ --></mml:mo>\\n <mml:mi>C</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi :D\\\\longrightarrow C</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> ramified in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\">\\n <mml:semantics>\\n <mml:mi>r</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> points to the Prym variety <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P left-parenthesis pi right-parenthesis colon-equal upper K e r left-parenthesis upper N m Subscript pi Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>P</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>π<!-- π --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≔</mml:mo>\\n <mml:mi>K</mml:mi>\\n <mml:mi>e</mml:mi>\\n <mml:mi>r</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>N</mml:mi>\\n <mml:msub>\\n <mml:mi>m</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>π<!-- π --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">P(\\\\pi )≔Ker(Nm_{\\\\pi })</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an embedding for all <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r greater-than-or-equal-to 6\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>r</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>6</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">r\\\\ge 6</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and for all <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g left-parenthesis upper C right-parenthesis greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>C</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g(C)>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Moreover, by studying the restriction to the locus of coverings of hyperelliptic curves, we show that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper P Subscript g comma 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>g</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal P_{g, 2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper P Subscript g comma 4\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>g</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mn>4</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal P_{g, 4}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> have positive dimensional fibers.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/779\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/779","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

我们证明了分支Prym映射P g, r \mathcal p_{G, r} 它发出一个覆盖π: D \pi : d\longrightarrow C在r中的分支r指向P(π),其中K e r (N m π) P(\pi )对象是Ker(Nm_{\pi })是对所有r≥6r的嵌入\ge 对于所有g(C)>0 g(C)>0。此外,通过研究超椭圆曲线覆盖轨迹的限制,我们证明了P g, 2 \mathcal p_{G, 2} P g, 4 \mathcal p_{G, 4} 有正维纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Prym-Torelli for double coverings ramified in at least six points

We prove that the ramified Prym map P g , r \mathcal P_{g, r} which sends a covering π : D C \pi :D\longrightarrow C ramified in r r points to the Prym variety P ( π ) K e r ( N m π ) P(\pi )≔Ker(Nm_{\pi }) is an embedding for all r 6 r\ge 6 and for all g ( C ) > 0 g(C)>0 . Moreover, by studying the restriction to the locus of coverings of hyperelliptic curves, we show that P g , 2 \mathcal P_{g, 2} and P g , 4 \mathcal P_{g, 4} have positive dimensional fibers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信