Proceedings of the Royal Society of Edinburgh Section A-Mathematics最新文献

筛选
英文 中文
A mathematical analysis of the Kakinuma model for interfacial gravity waves. Part II: justification as a shallow water approximation 界面重力波 Kakinuma 模型的数学分析。第二部分:浅水近似的合理性
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-18 DOI: 10.1017/prm.2024.30
Vincent Duchêne, Tatsuo Iguchi
{"title":"A mathematical analysis of the Kakinuma model for interfacial gravity waves. Part II: justification as a shallow water approximation","authors":"Vincent Duchêne, Tatsuo Iguchi","doi":"10.1017/prm.2024.30","DOIUrl":"https://doi.org/10.1017/prm.2024.30","url":null,"abstract":"<p>We consider the Kakinuma model for the motion of interfacial gravity waves. The Kakinuma model is a system of Euler–Lagrange equations for an approximate Lagrangian, which is obtained by approximating the velocity potentials in the Lagrangian of the full model. Structures of the Kakinuma model and the well-posedness of its initial value problem were analysed in the companion paper [14]. In this present paper, we show that the Kakinuma model is a higher order shallow water approximation to the full model for interfacial gravity waves with an error of order <span><span><span data-mathjax-type=\"texmath\"><span>$O(delta _1^{4N+2}+delta _2^{4N+2})$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153711817-0521:S0308210524000301:S0308210524000301_inline1.png\"/></span></span> in the sense of consistency, where <span><span><span data-mathjax-type=\"texmath\"><span>$delta _1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153711817-0521:S0308210524000301:S0308210524000301_inline2.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$delta _2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153711817-0521:S0308210524000301:S0308210524000301_inline3.png\"/></span></span> are shallowness parameters, which are the ratios of the mean depths of the upper and the lower layers to the typical horizontal wavelength, respectively, and <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153711817-0521:S0308210524000301:S0308210524000301_inline4.png\"/></span></span> is, roughly speaking, the size of the Kakinuma model and can be taken an arbitrarily large number. Moreover, under a hypothesis of the existence of the solution to the full model with a uniform bound, a rigorous justification of the Kakinuma model is proved by giving an error estimate between the solution to the Kakinuma model and that of the full model. An error estimate between the Hamiltonian of the Kakinuma model and that of the full model is also provided.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"16 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global index of real polynomials 实多项式的全局指数
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-18 DOI: 10.1017/prm.2024.23
Gabriel E. Monsalve, Mihai Tibăr
{"title":"Global index of real polynomials","authors":"Gabriel E. Monsalve, Mihai Tibăr","doi":"10.1017/prm.2024.23","DOIUrl":"https://doi.org/10.1017/prm.2024.23","url":null,"abstract":"<p>We develop two methods for expressing the global index of the gradient of a 2 variable polynomial function <span><span><span data-mathjax-type=\"texmath\"><span>$f$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153410714-0444:S0308210524000234:S0308210524000234_inline1.png\"/></span></span>: in terms of the atypical fibres of <span><span><span data-mathjax-type=\"texmath\"><span>$f$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153410714-0444:S0308210524000234:S0308210524000234_inline2.png\"/></span></span>, and in terms of the clusters of Milnor arcs at infinity. These allow us to derive upper bounds for the global index, in particular refining the one that was found by Durfee in terms of the degree of <span><span><span data-mathjax-type=\"texmath\"><span>$f$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153410714-0444:S0308210524000234:S0308210524000234_inline3.png\"/></span></span>.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eternal solutions to a porous medium equation with strong non-homogeneous absorption. Part I: radially non-increasing profiles 具有强非均质吸收的多孔介质方程的永恒解。第一部分:径向非递增剖面
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-14 DOI: 10.1017/prm.2024.29
Razvan Gabriel Iagar, Philippe Laurençot
{"title":"Eternal solutions to a porous medium equation with strong non-homogeneous absorption. Part I: radially non-increasing profiles","authors":"Razvan Gabriel Iagar, Philippe Laurençot","doi":"10.1017/prm.2024.29","DOIUrl":"https://doi.org/10.1017/prm.2024.29","url":null,"abstract":"<p>Existence of specific <span>eternal solutions</span> in exponential self-similar form to the following quasilinear diffusion equation with strong absorption<span><span data-mathjax-type=\"texmath\"><span>[ partial_t u=Delta u^m-|x|^{sigma}u^q, ]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_eqnU1.png\"/></span>posed for <span><span><span data-mathjax-type=\"texmath\"><span>$(t,,x)in (0,,infty )times mathbb {R}^N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline1.png\"/></span></span>, with <span><span><span data-mathjax-type=\"texmath\"><span>$m&gt;1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline2.png\"/></span></span>, <span><span><span data-mathjax-type=\"texmath\"><span>$qin (0,,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline3.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$sigma =sigma _c:=2(1-q)/ (m-1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline4.png\"/></span></span> is proved. Looking for radially symmetric solutions of the form<span><span data-mathjax-type=\"texmath\"><span>[ u(t,x)={rm e}^{-alpha t}f(|x|,{rm e}^{beta t}), quad alpha=frac{2}{m-1}beta, ]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_eqnU2.png\"/></span>we show that there exists a unique exponent <span><span><span data-mathjax-type=\"texmath\"><span>$beta ^*in (0,,infty )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline5.png\"/></span></span> for which there exists a one-parameter family <span><span><span data-mathjax-type=\"texmath\"><span>$(u_A)_{A&gt;0}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline6.png\"/></span></span> of solutions with compactly supported and non-increasing profiles <span><span><span data-mathjax-type=\"texmath\"><span>$(f_A)_{A&gt;0}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:ca","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decay at infinity for solutions to some fractional parabolic equations 一些分数抛物方程解的无穷衰减
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-14 DOI: 10.1017/prm.2024.9
Agnid Banerjee, Abhishek Ghosh
{"title":"Decay at infinity for solutions to some fractional parabolic equations","authors":"Agnid Banerjee, Abhishek Ghosh","doi":"10.1017/prm.2024.9","DOIUrl":"https://doi.org/10.1017/prm.2024.9","url":null,"abstract":"<p>For <span><span><span data-mathjax-type=\"texmath\"><span>$sin [tfrac {1}{2},, 1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline1.png\"/></span></span>, let <span><span><span data-mathjax-type=\"texmath\"><span>$u$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline2.png\"/></span></span> solve <span><span><span data-mathjax-type=\"texmath\"><span>$(partial _t - Delta )^s u = Vu$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline3.png\"/></span></span> in <span><span><span data-mathjax-type=\"texmath\"><span>$mathbb {R}^{n} times [-T,, 0]$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline4.png\"/></span></span> for some <span><span><span data-mathjax-type=\"texmath\"><span>$T&gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline5.png\"/></span></span> where <span><span><span data-mathjax-type=\"texmath\"><span>$||V||_{ C^2(mathbb {R}^n times [-T, 0])} &lt; infty$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline6.png\"/></span></span>. We show that if for some <span><span><span data-mathjax-type=\"texmath\"><span>$0&lt;mathfrak {K} &lt; T$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline7.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$epsilon &gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline8.png\"/></span></span><span><span data-mathjax-type=\"texmath\"><span>[ {unicode{x2A0D}}-_{[-mathfrak{K},, 0]} u^2(x, t) {rm d}t leq Ce^{-|x|^{2+epsilon}} forall x in mathbb{R}^n, ]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_eqnU1.png\"/></span>then <span><span><span data-mathjax-type=\"texmath\"><span>$u equiv 0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/i","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"18 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Necessary and sufficient conditions for ground state solutions to planar Kirchhoff-type equations 平面基尔霍夫型方程基态解的必要条件和充分条件
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-11 DOI: 10.1017/prm.2024.26
Chunyu Lei, Binlin Zhang
{"title":"Necessary and sufficient conditions for ground state solutions to planar Kirchhoff-type equations","authors":"Chunyu Lei, Binlin Zhang","doi":"10.1017/prm.2024.26","DOIUrl":"https://doi.org/10.1017/prm.2024.26","url":null,"abstract":"<p>In this paper, we are concerned with the ground states of the following planar Kirchhoff-type problem:<span><span data-mathjax-type=\"texmath\"><span>[ -left(1+bdisplaystyleint_{mathbb{R}^2}|nabla u|^2,{rm d}xright)Delta u+omega u=|u|^{p-2}u, quad xinmathbb{R}^2. ]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_eqnU1.png\"/></span>where <span><span><span data-mathjax-type=\"texmath\"><span>$b,, omega &gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_inline1.png\"/></span></span> are constants, <span><span><span data-mathjax-type=\"texmath\"><span>$p&gt;2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_inline2.png\"/></span></span>. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"36 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal inverse problems of potentials for two given eigenvalues of Sturm–Liouville problems Sturm-Liouville 问题中两个给定特征值的最优势逆问题
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-07 DOI: 10.1017/prm.2024.28
Min Zhao, Jiangang Qi
{"title":"Optimal inverse problems of potentials for two given eigenvalues of Sturm–Liouville problems","authors":"Min Zhao, Jiangang Qi","doi":"10.1017/prm.2024.28","DOIUrl":"https://doi.org/10.1017/prm.2024.28","url":null,"abstract":"<p>The present paper is concerned with the infimum of the norm of potentials for Sturm–Liouville eigenvalue problems with Dirichlet boundary condition such that the first two eigenvalues are known. The explicit quantity of the infimum is given by the two eigenvalues.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"167 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Index estimates of compact hypersurfaces in smooth metric measure spaces 光滑度量空间中紧凑超曲面的指数估算
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-07 DOI: 10.1017/prm.2024.25
Márcio Batista, Matheus B. Martins
{"title":"Index estimates of compact hypersurfaces in smooth metric measure spaces","authors":"Márcio Batista, Matheus B. Martins","doi":"10.1017/prm.2024.25","DOIUrl":"https://doi.org/10.1017/prm.2024.25","url":null,"abstract":"<p>In this article, we investigate the spectra of the stability and Hodge–Laplacian operators on a compact manifold immersed as a hypersurface in a smooth metric measure space, possibly with singularities. Using ideas developed by A. Ros and A. Savo, along with an ingenious computation, we have obtained a comparison between the spectra of these operators. As a byproduct of this technique, we have deduced an estimate of the Morse index of such hypersurfaces.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"18 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invariant measures and large deviation principles for stochastic Schrödinger delay lattice systems 随机薛定谔延迟晶格系统的不变量和大偏差原理
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-04 DOI: 10.1017/prm.2024.20
Zhang Chen, Xiaoxiao Sun, Bixiang Wang
{"title":"Invariant measures and large deviation principles for stochastic Schrödinger delay lattice systems","authors":"Zhang Chen, Xiaoxiao Sun, Bixiang Wang","doi":"10.1017/prm.2024.20","DOIUrl":"https://doi.org/10.1017/prm.2024.20","url":null,"abstract":"<p>This paper is concerned with stochastic Schrödinger delay lattice systems with both locally Lipschitz drift and diffusion terms. Based on the uniform estimates and the equicontinuity of the segment of the solution in probability, we show the tightness of a family of probability distributions of the solution and its segment process, and hence the existence of invariant measures on <span><span><span data-mathjax-type=\"texmath\"><span>$l^2times L^2((-rho,,0);l^2)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240302133705906-0511:S0308210524000209:S0308210524000209_inline1.png\"/></span></span> with <span><span><span data-mathjax-type=\"texmath\"><span>$rho &gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240302133705906-0511:S0308210524000209:S0308210524000209_inline2.png\"/></span></span>. We also establish a large deviation principle for the solutions with small noise by the weak convergence method.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcations and pattern formation in a host–parasitoid model with nonlocal effect 具有非局部效应的寄主-寄生虫模型中的分岔和模式形成
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-03-04 DOI: 10.1017/prm.2024.24
Chuang Xiang, Jicai Huang, Min Lu, Shigui Ruan, Hao Wang
{"title":"Bifurcations and pattern formation in a host–parasitoid model with nonlocal effect","authors":"Chuang Xiang, Jicai Huang, Min Lu, Shigui Ruan, Hao Wang","doi":"10.1017/prm.2024.24","DOIUrl":"https://doi.org/10.1017/prm.2024.24","url":null,"abstract":"<p>In this paper, we analyse Turing instability and bifurcations in a host–parasitoid model with nonlocal effect. For a ordinary differential equation model, we provide some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with local intraspecific prey competition, we first explore the Turing instability of spatially homogeneous steady states. Next, we show that the model can undergo Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially nonhomogeneous periodic solutions is stable for a <span>(8,0)-mode Turing–Hopf bifurcation</span> and unstable for a <span>(3,0)-mode Turing–Hopf bifurcation</span>. For a reaction–diffusion model with nonlocal intraspecific prey competition, we study the existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous quasi-periodic solution is unstable for a <span>(0,1)-mode double-Hopf bifurcation</span>. Our results indicate that the model exhibits complex pattern formations, including transient states, monostability, bistability, and tristability. Finally, numerical simulations are provided to illustrate complex dynamics and verify our theoretical results.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"55 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invariant set generated by a nonreal number is everywhere dense 非实数生成的不变集处处致密
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-29 DOI: 10.1017/prm.2024.22
Artūras Dubickas
{"title":"Invariant set generated by a nonreal number is everywhere dense","authors":"Artūras Dubickas","doi":"10.1017/prm.2024.22","DOIUrl":"https://doi.org/10.1017/prm.2024.22","url":null,"abstract":"A set of complex numbers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline1.png\" /> </jats:alternatives> </jats:inline-formula> is called invariant if it is closed under addition and multiplication, namely, for any <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x, y in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline2.png\" /> </jats:alternatives> </jats:inline-formula> we have <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x+y in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline3.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$xy in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline4.png\" /> </jats:alternatives> </jats:inline-formula>. For each <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s in {mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline5.png\" /> </jats:alternatives> </jats:inline-formula> the smallest invariant set <jats:inline-formula> <jats:alternatives> <jats:tex-math>${mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline6.png\" /> </jats:alternatives> </jats:inline-formula> containing <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline7.png\" /> </jats:alternatives> </jats:inline-formula> consists of all possible sums <jats:inline-formula> <jats:alternatives> <jats:tex-math>$sum _{i in I} a_i s^i$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline8.png\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline9.png\" /> </jats:alternatives> </jats:inline-formula> runs over all finite nonempty subsets of the set of positive integers <jats:inline-formula> <jats:alternatives> <jats:tex-math>${mathbb {N}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline10.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a_i in {mathbb {N}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http:","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信