Necessary and sufficient conditions for ground state solutions to planar Kirchhoff-type equations

IF 1.3 3区 数学 Q1 MATHEMATICS
Chunyu Lei, Binlin Zhang
{"title":"Necessary and sufficient conditions for ground state solutions to planar Kirchhoff-type equations","authors":"Chunyu Lei, Binlin Zhang","doi":"10.1017/prm.2024.26","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the ground states of the following planar Kirchhoff-type problem:<span><span data-mathjax-type=\"texmath\"><span>\\[ -\\left(1+b\\displaystyle\\int_{\\mathbb{R}^2}|\\nabla u|^2\\,{\\rm d}x\\right)\\Delta u+\\omega u=|u|^{p-2}u, \\quad x\\in\\mathbb{R}^2. \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_eqnU1.png\"/></span>where <span><span><span data-mathjax-type=\"texmath\"><span>$b,\\, \\omega &gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_inline1.png\"/></span></span> are constants, <span><span><span data-mathjax-type=\"texmath\"><span>$p&gt;2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_inline2.png\"/></span></span>. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"36 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.26","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the ground states of the following planar Kirchhoff-type problem:\[ -\left(1+b\displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u+\omega u=|u|^{p-2}u, \quad x\in\mathbb{R}^2. \]Abstract Imagewhere $b,\, \omega >0$Abstract Image are constants, $p>2$Abstract Image. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.

平面基尔霍夫型方程基态解的必要条件和充分条件
在本文中,我们关注以下平面基尔霍夫型问题的基态:\[ -\left(1+b\displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u+\omega u=|u|^{p-2}u, \quad x\in\mathbb{R}^2.\其中$b,\,\omega >0$为常数,$p>2$。基于变分法、正则性理论和施瓦茨对称性,得到了上述问题的基态解与某些最小化问题的最小值的等价性。特别是采用了一种新的尺度技术和拉格朗日乘法器,巧妙地克服了一些内在困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信