{"title":"Decay at infinity for solutions to some fractional parabolic equations","authors":"Agnid Banerjee, Abhishek Ghosh","doi":"10.1017/prm.2024.9","DOIUrl":null,"url":null,"abstract":"<p>For <span><span><span data-mathjax-type=\"texmath\"><span>$s\\in [\\tfrac {1}{2},\\, 1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline1.png\"/></span></span>, let <span><span><span data-mathjax-type=\"texmath\"><span>$u$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline2.png\"/></span></span> solve <span><span><span data-mathjax-type=\"texmath\"><span>$(\\partial _t - \\Delta )^s u = Vu$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline3.png\"/></span></span> in <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^{n} \\times [-T,\\, 0]$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline4.png\"/></span></span> for some <span><span><span data-mathjax-type=\"texmath\"><span>$T>0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline5.png\"/></span></span> where <span><span><span data-mathjax-type=\"texmath\"><span>$||V||_{ C^2(\\mathbb {R}^n \\times [-T, 0])} < \\infty$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline6.png\"/></span></span>. We show that if for some <span><span><span data-mathjax-type=\"texmath\"><span>$0<\\mathfrak {K} < T$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline7.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$\\epsilon >0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline8.png\"/></span></span><span><span data-mathjax-type=\"texmath\"><span>\\[ {\\unicode{x2A0D}}-_{[-\\mathfrak{K},\\, 0]} u^2(x, t) {\\rm d}t \\leq Ce^{-|x|^{2+\\epsilon}}\\ \\forall x \\in \\mathbb{R}^n, \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_eqnU1.png\"/></span>then <span><span><span data-mathjax-type=\"texmath\"><span>$u \\equiv 0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline9.png\"/></span></span> in <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^{n} \\times [-T,\\, 0]$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline10.png\"/></span></span>.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"18 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For $s\in [\tfrac {1}{2},\, 1)$, let $u$ solve $(\partial _t - \Delta )^s u = Vu$ in $\mathbb {R}^{n} \times [-T,\, 0]$ for some $T>0$ where $||V||_{ C^2(\mathbb {R}^n \times [-T, 0])} < \infty$. We show that if for some $0<\mathfrak {K} < T$ and $\epsilon >0$\[ {\unicode{x2A0D}}-_{[-\mathfrak{K},\, 0]} u^2(x, t) {\rm d}t \leq Ce^{-|x|^{2+\epsilon}}\ \forall x \in \mathbb{R}^n, \]then $u \equiv 0$ in $\mathbb {R}^{n} \times [-T,\, 0]$.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.