Proceedings of the Royal Society of Edinburgh Section A-Mathematics最新文献

筛选
英文 中文
On a critical time-harmonic Maxwell equation in nonlocal media 关于非局部介质中的临界时谐麦克斯韦方程
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-29 DOI: 10.1017/prm.2024.11
Minbo Yang, Weiwei Ye, Shuijin Zhang
{"title":"On a critical time-harmonic Maxwell equation in nonlocal media","authors":"Minbo Yang, Weiwei Ye, Shuijin Zhang","doi":"10.1017/prm.2024.11","DOIUrl":"https://doi.org/10.1017/prm.2024.11","url":null,"abstract":"In this paper, we study the existence of solutions for a critical time–harmonic Maxwell equation in nonlocal media <jats:disp-formula> <jats:alternatives> <jats:tex-math>[ begin{cases} nablatimes(nablatimes u)+lambda u=left(I_{alpha}ast|u|^{2^{{ast}}_{alpha}}right)|u|^{2^{{ast}}_{alpha}-2}u &amp; mathrm{in} Omega, nutimes u=0 &amp; mathrm{on} partialOmega, end{cases} ]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000118_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Omega subset mathbb {R}^{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline1.png\" /> </jats:alternatives> </jats:inline-formula> is a bounded domain, either convex or with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$mathcal {C}^{1,1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline2.png\" /> </jats:alternatives> </jats:inline-formula> boundary, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$nu$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline3.png\" /> </jats:alternatives> </jats:inline-formula> is the exterior normal, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$lambda &lt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline4.png\" /> </jats:alternatives> </jats:inline-formula> is a real parameter, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2^{ast }_{alpha }=3+alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline5.png\" /> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0&lt;alpha &lt;3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline6.png\" /> </jats:alternatives> </jats:inline-formula> is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator <jats:inline-formula> <jats:alternatives> <jats:tex-math>$W^{alpha,2^{ast }_{alpha }}_{0}(mathrm {curl};Omega )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline7.png\" /> </jats:alternatives> </jats:inline-formula>, we are able to obtain the ground state solutions of the curl–curl equation via the method of constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the con","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity of positive solutions for a class of nonhomogeneous elliptic equations in the hyperbolic space 双曲空间一类非均质椭圆方程正解的多重性
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-27 DOI: 10.1017/prm.2024.18
Debdip Ganguly, Diksha Gupta, K. Sreenadh
{"title":"Multiplicity of positive solutions for a class of nonhomogeneous elliptic equations in the hyperbolic space","authors":"Debdip Ganguly, Diksha Gupta, K. Sreenadh","doi":"10.1017/prm.2024.18","DOIUrl":"https://doi.org/10.1017/prm.2024.18","url":null,"abstract":"The paper is concerned with positive solutions to problems of the type <jats:disp-formula> <jats:alternatives> <jats:tex-math>[ -Delta_{mathbb{B}^{N}} u - lambda u = a(x) |u|^{p-1};u + f text{ in }mathbb{B}^{N}, quad u in H^{1}{(mathbb{B}^{N})}, ]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000180_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$mathbb {B}^N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline1.png\" /> </jats:alternatives> </jats:inline-formula> denotes the hyperbolic space, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$1&lt; p&lt;2^*-1:=frac {N+2}{N-2}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline2.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$;lambda &lt; frac {(N-1)^2}{4}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$f in H^{-1}(mathbb {B}^{N})$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline4.png\" /> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:tex-math>$f not equiv 0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline5.png\" /> </jats:alternatives> </jats:inline-formula>) is a non-negative functional. The potential <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ain L^infty (mathbb {B}^N)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline6.png\" /> </jats:alternatives> </jats:inline-formula> is assumed to be strictly positive, such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$lim _{d(x, 0) rightarrow infty } a(x) rightarrow 1,$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline7.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d(x,, 0)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline8.png\" /> </jats:alternatives> </jats:inline-formula> denotes the geodesic distance. First, the existence of three positive solutions is proved under the assumption that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a(x) leq 1$</jats:tex-math> <jats:i","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"53 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A collision result for both non-Newtonian and heat conducting Newtonian compressible fluids 非牛顿和导热牛顿可压缩流体的碰撞结果
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-26 DOI: 10.1017/prm.2024.5
Šárka Nečasová, Florian Oschmann
{"title":"A collision result for both non-Newtonian and heat conducting Newtonian compressible fluids","authors":"Šárka Nečasová, Florian Oschmann","doi":"10.1017/prm.2024.5","DOIUrl":"https://doi.org/10.1017/prm.2024.5","url":null,"abstract":"<p>We generalize the known collision results for a solid in a 3D compressible Newtonian fluid to compressible non-Newtonian ones, and to Newtonian fluids with temperature-depending viscosities.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qualitative properties of solutions for system involving the fractional Laplacian 涉及分数拉普拉奇的系统解的定性特性
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-26 DOI: 10.1017/prm.2024.10
Ran Zhuo, Yingshu Lü
{"title":"Qualitative properties of solutions for system involving the fractional Laplacian","authors":"Ran Zhuo, Yingshu Lü","doi":"10.1017/prm.2024.10","DOIUrl":"https://doi.org/10.1017/prm.2024.10","url":null,"abstract":"<p>In this paper, we consider the following non-linear system involving the fractional Laplacian<span><span>0.1</span><span data-mathjax-type=\"texmath\"><span>begin{equation} left{begin{array}{@{}ll} (-Delta)^{s} u (x)= f(u,,v), (-Delta)^{s} v (x)= g(u,,v), end{array} right. end{equation}</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_eqn1.png\"/></span>in two different types of domains, one is bounded, and the other is an infinite cylinder, where <span><span><span data-mathjax-type=\"texmath\"><span>$0&lt; s&lt;1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline1.png\"/></span></span>. We employ the direct sliding method for fractional Laplacian, different from the conventional extension and moving planes methods, to derive the monotonicity of solutions for (0.1) in <span><span><span data-mathjax-type=\"texmath\"><span>$x_n$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline2.png\"/></span></span> variable. Meanwhile, we develop a new iteration method for systems in the proofs. Hopefully, the iteration method can also be applied to solve other problems.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"2 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlocal anisotropic interactions of Coulomb type 库仑式非局部各向异性相互作用
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-26 DOI: 10.1017/prm.2024.19
Maria Giovanna Mora
{"title":"Nonlocal anisotropic interactions of Coulomb type","authors":"Maria Giovanna Mora","doi":"10.1017/prm.2024.19","DOIUrl":"https://doi.org/10.1017/prm.2024.19","url":null,"abstract":"<p>In this paper, we review some recent results on nonlocal interaction problems. The focus is on interaction kernels that are anisotropic variants of the classical Coulomb kernel. In other words, while preserving the same singularity at zero of the Coulomb kernel, they present preferred directions of interaction. For kernels of this kind and general confinement we will prove existence and uniqueness of minimizers of the corresponding energy. In the case of a quadratic confinement we will review a recent result by Carrillo and Shu about the explicit characterization of minimizers, and present a new proof, which has the advantage of being extendable to higher dimensions. In light of this result, we will re-examine some previous works motivated by applications to dislocation theory in materials science. Finally, we will discuss some related results and open questions.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Common valuations of division polynomials 除法多项式的常见估值
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-26 DOI: 10.1017/prm.2024.7
Bartosz Naskręcki, Matteo Verzobio
{"title":"Common valuations of division polynomials","authors":"Bartosz Naskręcki, Matteo Verzobio","doi":"10.1017/prm.2024.7","DOIUrl":"https://doi.org/10.1017/prm.2024.7","url":null,"abstract":"<p>In this note, we prove a formula for the cancellation exponent <span><span><span data-mathjax-type=\"texmath\"><span>$k_{v,n}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline1.png\"/></span></span> between division polynomials <span><span><span data-mathjax-type=\"texmath\"><span>$psi _n$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline2.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$phi _n$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline3.png\"/></span></span> associated with a sequence <span><span><span data-mathjax-type=\"texmath\"><span>${nP}_{nin mathbb {N}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline4.png\"/></span></span> of points on an elliptic curve <span><span><span data-mathjax-type=\"texmath\"><span>$E$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline5.png\"/></span></span> defined over a discrete valuation field <span><span><span data-mathjax-type=\"texmath\"><span>$K$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline6.png\"/></span></span>. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"14 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Γ-convergence of the Allen–Cahn functional with boundary conditions 关于具有边界条件的艾伦-卡恩函数的Γ收敛性
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-12 DOI: 10.1017/prm.2024.4
Dimitrios Gazoulis
{"title":"On the Γ-convergence of the Allen–Cahn functional with boundary conditions","authors":"Dimitrios Gazoulis","doi":"10.1017/prm.2024.4","DOIUrl":"https://doi.org/10.1017/prm.2024.4","url":null,"abstract":"We study minimizers of the Allen–Cahn system. We consider the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$varepsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000040_inline2.png\" /> </jats:alternatives> </jats:inline-formula>-energy functional with Dirichlet values and we establish the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Gamma$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000040_inline3.png\" /> </jats:alternatives> </jats:inline-formula>-limit. The minimizers of the limiting functional are closely related to minimizing partitions of the domain. Finally, utilizing that the triod and the straight line are the only minimal cones in the plane together with regularity results for minimal curves, we determine the precise structure of the minimizers of the limiting functional, and thus the limit of minimizers of the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$varepsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000040_inline4.png\" /> </jats:alternatives> </jats:inline-formula>-energy functional as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$varepsilon rightarrow 0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000040_inline5.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"151 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations 论二维多流体力学方程中库特附近剪切流的索波列夫稳定阈值
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-12 DOI: 10.1017/prm.2024.6
Ting Chen, Ruizhao Zi
{"title":"On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations","authors":"Ting Chen, Ruizhao Zi","doi":"10.1017/prm.2024.6","DOIUrl":"https://doi.org/10.1017/prm.2024.6","url":null,"abstract":"In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(alpha,0 )^top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline1.png\" /> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$mathbb {T}times mathbb {R}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline2.png\" /> </jats:alternatives> </jats:inline-formula>. More precisely, for sufficiently large <jats:inline-formula> <jats:alternatives> <jats:tex-math>$alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, we show that when the initial datum of the shear flow satisfies <jats:inline-formula> <jats:alternatives> <jats:tex-math>$left | U(y)-yright |_{H^{N+6}}ll 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline4.png\" /> </jats:alternatives> </jats:inline-formula>, with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N&gt;1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline5.png\" /> </jats:alternatives> </jats:inline-formula>, and the initial perturbations <jats:inline-formula> <jats:alternatives> <jats:tex-math>${u}_{mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline6.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>${b}_{mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline7.png\" /> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:tex-math>$left | ( {u}_{mathrm {in}},{b}_{mathrm {in}}) right | _{H^{N+1}}=epsilon ll nu ^{frac 56+tilde delta }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline8.png\" /> </jats:alternatives> </jats:inline-formula> for any fixed <jats:inline-formula> <jats:alternatives> <jats:tex-math>$tilde delta &gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline9.png\" /> </jats:alternatives> </jats:inline-formula>, then the solution of the 2D MHD equations remains <jats:inline-formula> <jats:alternatives> <jats:tex-math>$nu ^{-(frac {1}{3}+frac {tilde delta }{2})}epsilon$</jats:tex-math> <jats:i","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remarks on a formula of Ramanujan 关于拉曼努强公式的评论
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-02-06 DOI: 10.1017/prm.2023.136
Andrés Chirre, Steven M. Gonek
{"title":"Remarks on a formula of Ramanujan","authors":"Andrés Chirre, Steven M. Gonek","doi":"10.1017/prm.2023.136","DOIUrl":"https://doi.org/10.1017/prm.2023.136","url":null,"abstract":"Assuming an averaged form of Mertens’ conjecture and that the ordinates of the non-trivial zeros of the Riemann zeta function are linearly independent over the rationals, we analyse the finer structure of the terms in a well-known formula of Ramanujan.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the existence of a nodal solution for p-Laplacian equations depending on the gradient 论取决于梯度的 p 拉普拉斯方程节点解的存在性
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-01-31 DOI: 10.1017/prm.2023.135
F. Faraci, D. Puglisi
{"title":"On the existence of a nodal solution for p-Laplacian equations depending on the gradient","authors":"F. Faraci, D. Puglisi","doi":"10.1017/prm.2023.135","DOIUrl":"https://doi.org/10.1017/prm.2023.135","url":null,"abstract":"<p>In the present paper we deal with a quasi-linear elliptic equation depending on a sublinear nonlinearity involving the gradient. We prove the existence of a nontrivial nodal solution employing the theory of invariant sets of descending flow together with sub-supersolution techniques, gradient regularity arguments, strong comparison principle for the <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151231725-0751:S030821052300135X:S030821052300135X_inline2.png\"/></span></span>-Laplace operator. The same conclusion is obtained for an eigenvalue problem under a different set of assumptions.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"103 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信