On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations

IF 1.3 3区 数学 Q1 MATHEMATICS
Ting Chen, Ruizhao Zi
{"title":"On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations","authors":"Ting Chen, Ruizhao Zi","doi":"10.1017/prm.2024.6","DOIUrl":null,"url":null,"abstract":"In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\alpha,0 )^\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline1.png\" /> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathbb {T}\\times \\mathbb {R}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline2.png\" /> </jats:alternatives> </jats:inline-formula>. More precisely, for sufficiently large <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, we show that when the initial datum of the shear flow satisfies <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\left \\| U(y)-y\\right \\|_{H^{N+6}}\\ll 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline4.png\" /> </jats:alternatives> </jats:inline-formula>, with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N&gt;1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline5.png\" /> </jats:alternatives> </jats:inline-formula>, and the initial perturbations <jats:inline-formula> <jats:alternatives> <jats:tex-math>${u}_{\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline6.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>${b}_{\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline7.png\" /> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\left \\| ( {u}_{\\mathrm {in}},{b}_{\\mathrm {in}}) \\right \\| _{H^{N+1}}=\\epsilon \\ll \\nu ^{\\frac 56+\\tilde \\delta }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline8.png\" /> </jats:alternatives> </jats:inline-formula> for any fixed <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\tilde \\delta &gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline9.png\" /> </jats:alternatives> </jats:inline-formula>, then the solution of the 2D MHD equations remains <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\nu ^{-(\\frac {1}{3}+\\frac {\\tilde \\delta }{2})}\\epsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline10.png\" /> </jats:alternatives> </jats:inline-formula>-close to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$( e^{\\nu t \\partial _{yy}}U(y),0)^\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline11.png\" /> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t&gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline12.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field $(\alpha,0 )^\top$ on $\mathbb {T}\times \mathbb {R}$ . More precisely, for sufficiently large $\alpha$ , we show that when the initial datum of the shear flow satisfies $\left \| U(y)-y\right \|_{H^{N+6}}\ll 1$ , with $N>1$ , and the initial perturbations ${u}_{\mathrm {in}}$ and ${b}_{\mathrm {in}}$ satisfy $\left \| ( {u}_{\mathrm {in}},{b}_{\mathrm {in}}) \right \| _{H^{N+1}}=\epsilon \ll \nu ^{\frac 56+\tilde \delta }$ for any fixed $\tilde \delta >0$ , then the solution of the 2D MHD equations remains $\nu ^{-(\frac {1}{3}+\frac {\tilde \delta }{2})}\epsilon$ -close to $( e^{\nu t \partial _{yy}}U(y),0)^\top$ for all $t>0$ .
论二维多流体力学方程中库特附近剪切流的索波列夫稳定阈值
在这项工作中,我们研究了在二维不可压缩磁流体动力学(MHD)方程中,背景磁场$(\alpha,0 )^\top$在$\mathbb {T}\times\mathbb {R}$上的剪切流在Couette附近的Sobolev稳定性。更确切地说,对于足够大的 $\alpha$ ,我们证明当剪切流的初始基准满足 $\left\| U(y)-y\right \|_{H^{N+6}}\ll 1$ 时,有 $N>;1$ ,初始扰动 ${u}_{mathrm {in}}$ 和 ${b}_{mathrm {in}}$ 满足 $left \| ( {u}_{mathrm {in}}、{b}_{\mathrm {in}}) _{H^{N+1}}=epsilon \ll \nu ^{frac 56+tilde \delta }$ 对于任意固定的 $\tilde \delta >;0$ ,那么二维 MHD方程的解仍然是 $\nu ^{-(\frac {1}{3}+\frac {tilde\delta }{2})}epsilon$ -close to $( e^{\nu t \partial _{yy}}U(y),0)^\top$ for all $t>0$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信