{"title":"Multiplicity of positive solutions for a class of nonhomogeneous elliptic equations in the hyperbolic space","authors":"Debdip Ganguly, Diksha Gupta, K. Sreenadh","doi":"10.1017/prm.2024.18","DOIUrl":null,"url":null,"abstract":"The paper is concerned with positive solutions to problems of the type <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ -\\Delta_{\\mathbb{B}^{N}} u - \\lambda u = a(x) |u|^{p-1}\\;u + f \\text{ in }\\mathbb{B}^{N}, \\quad u \\in H^{1}{(\\mathbb{B}^{N})}, \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000180_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathbb {B}^N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline1.png\" /> </jats:alternatives> </jats:inline-formula> denotes the hyperbolic space, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$1< p<2^*-1:=\\frac {N+2}{N-2}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline2.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\;\\lambda < \\frac {(N-1)^2}{4}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$f \\in H^{-1}(\\mathbb {B}^{N})$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline4.png\" /> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:tex-math>$f \\not \\equiv 0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline5.png\" /> </jats:alternatives> </jats:inline-formula>) is a non-negative functional. The potential <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a\\in L^\\infty (\\mathbb {B}^N)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline6.png\" /> </jats:alternatives> </jats:inline-formula> is assumed to be strictly positive, such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lim _{d(x, 0) \\rightarrow \\infty } a(x) \\rightarrow 1,$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline7.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d(x,\\, 0)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline8.png\" /> </jats:alternatives> </jats:inline-formula> denotes the geodesic distance. First, the existence of three positive solutions is proved under the assumption that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a(x) \\leq 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline9.png\" /> </jats:alternatives> </jats:inline-formula>. Then the case <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a(x) \\geq 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline10.png\" /> </jats:alternatives> </jats:inline-formula> is considered, and the existence of two positive solutions is proved. In both cases, it is assumed that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mu ( \\{ x : a(x) \\neq 1\\}) > 0.$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline11.png\" /> </jats:alternatives> </jats:inline-formula> Subsequently, we establish the existence of two positive solutions for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a(x) \\equiv 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000180_inline12.png\" /> </jats:alternatives> </jats:inline-formula> and prove asymptotic estimates for positive solutions using barrier-type arguments. The proofs for existence combine variational arguments, key energy estimates involving <jats:italic>hyperbolic bubbles</jats:italic>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"53 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.18","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper is concerned with positive solutions to problems of the type \[ -\Delta_{\mathbb{B}^{N}} u - \lambda u = a(x) |u|^{p-1}\;u + f \text{ in }\mathbb{B}^{N}, \quad u \in H^{1}{(\mathbb{B}^{N})}, \]where $\mathbb {B}^N$ denotes the hyperbolic space, $1< p<2^*-1:=\frac {N+2}{N-2}$, $\;\lambda < \frac {(N-1)^2}{4}$, and $f \in H^{-1}(\mathbb {B}^{N})$ ($f \not \equiv 0$) is a non-negative functional. The potential $a\in L^\infty (\mathbb {B}^N)$ is assumed to be strictly positive, such that $\lim _{d(x, 0) \rightarrow \infty } a(x) \rightarrow 1,$ where $d(x,\, 0)$ denotes the geodesic distance. First, the existence of three positive solutions is proved under the assumption that $a(x) \leq 1$. Then the case $a(x) \geq 1$ is considered, and the existence of two positive solutions is proved. In both cases, it is assumed that $\mu ( \{ x : a(x) \neq 1\}) > 0.$ Subsequently, we establish the existence of two positive solutions for $a(x) \equiv 1$ and prove asymptotic estimates for positive solutions using barrier-type arguments. The proofs for existence combine variational arguments, key energy estimates involving hyperbolic bubbles.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.