涉及分数拉普拉奇的系统解的定性特性

IF 1.3 3区 数学 Q1 MATHEMATICS
Ran Zhuo, Yingshu Lü
{"title":"涉及分数拉普拉奇的系统解的定性特性","authors":"Ran Zhuo, Yingshu Lü","doi":"10.1017/prm.2024.10","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following non-linear system involving the fractional Laplacian<span><span>0.1</span><span data-mathjax-type=\"texmath\"><span>\\begin{equation} \\left\\{\\begin{array}{@{}ll} (-\\Delta)^{s} u (x)= f(u,\\,v), \\\\ (-\\Delta)^{s} v (x)= g(u,\\,v), \\end{array} \\right. \\end{equation}</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_eqn1.png\"/></span>in two different types of domains, one is bounded, and the other is an infinite cylinder, where <span><span><span data-mathjax-type=\"texmath\"><span>$0&lt; s&lt;1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline1.png\"/></span></span>. We employ the direct sliding method for fractional Laplacian, different from the conventional extension and moving planes methods, to derive the monotonicity of solutions for (0.1) in <span><span><span data-mathjax-type=\"texmath\"><span>$x_n$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline2.png\"/></span></span> variable. Meanwhile, we develop a new iteration method for systems in the proofs. Hopefully, the iteration method can also be applied to solve other problems.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"2 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative properties of solutions for system involving the fractional Laplacian\",\"authors\":\"Ran Zhuo, Yingshu Lü\",\"doi\":\"10.1017/prm.2024.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the following non-linear system involving the fractional Laplacian<span><span>0.1</span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\begin{equation} \\\\left\\\\{\\\\begin{array}{@{}ll} (-\\\\Delta)^{s} u (x)= f(u,\\\\,v), \\\\\\\\ (-\\\\Delta)^{s} v (x)= g(u,\\\\,v), \\\\end{array} \\\\right. \\\\end{equation}</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_eqn1.png\\\"/></span>in two different types of domains, one is bounded, and the other is an infinite cylinder, where <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$0&lt; s&lt;1$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline1.png\\\"/></span></span>. We employ the direct sliding method for fractional Laplacian, different from the conventional extension and moving planes methods, to derive the monotonicity of solutions for (0.1) in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$x_n$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline2.png\\\"/></span></span> variable. Meanwhile, we develop a new iteration method for systems in the proofs. Hopefully, the iteration method can also be applied to solve other problems.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑以下涉及分数拉普拉奇的非线性系统0.\(-\Delta)^{s} u (x)= f(u,\,v), (-\Delta)^{s} v (x)= g(u,\,v), end{array}\是的\end{equation}在两种不同类型的域中,一种是有界域,另一种是无限圆柱体,其中$0< s<1$。我们采用有别于传统的扩展法和移动平面法的分数拉普拉斯直接滑动法,推导出(0.1)在$x_n$变量中的解的单调性。同时,我们在证明中发展了一种新的系统迭代法。希望迭代法也能应用于解决其他问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative properties of solutions for system involving the fractional Laplacian

In this paper, we consider the following non-linear system involving the fractional Laplacian0.1\begin{equation} \left\{\begin{array}{@{}ll} (-\Delta)^{s} u (x)= f(u,\,v), \\ (-\Delta)^{s} v (x)= g(u,\,v), \end{array} \right. \end{equation}in two different types of domains, one is bounded, and the other is an infinite cylinder, where $0< s<1$. We employ the direct sliding method for fractional Laplacian, different from the conventional extension and moving planes methods, to derive the monotonicity of solutions for (0.1) in $x_n$ variable. Meanwhile, we develop a new iteration method for systems in the proofs. Hopefully, the iteration method can also be applied to solve other problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信