{"title":"涉及分数拉普拉奇的系统解的定性特性","authors":"Ran Zhuo, Yingshu Lü","doi":"10.1017/prm.2024.10","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following non-linear system involving the fractional Laplacian<span><span>0.1</span><span data-mathjax-type=\"texmath\"><span>\\begin{equation} \\left\\{\\begin{array}{@{}ll} (-\\Delta)^{s} u (x)= f(u,\\,v), \\\\ (-\\Delta)^{s} v (x)= g(u,\\,v), \\end{array} \\right. \\end{equation}</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_eqn1.png\"/></span>in two different types of domains, one is bounded, and the other is an infinite cylinder, where <span><span><span data-mathjax-type=\"texmath\"><span>$0< s<1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline1.png\"/></span></span>. We employ the direct sliding method for fractional Laplacian, different from the conventional extension and moving planes methods, to derive the monotonicity of solutions for (0.1) in <span><span><span data-mathjax-type=\"texmath\"><span>$x_n$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline2.png\"/></span></span> variable. Meanwhile, we develop a new iteration method for systems in the proofs. Hopefully, the iteration method can also be applied to solve other problems.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"2 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative properties of solutions for system involving the fractional Laplacian\",\"authors\":\"Ran Zhuo, Yingshu Lü\",\"doi\":\"10.1017/prm.2024.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the following non-linear system involving the fractional Laplacian<span><span>0.1</span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\begin{equation} \\\\left\\\\{\\\\begin{array}{@{}ll} (-\\\\Delta)^{s} u (x)= f(u,\\\\,v), \\\\\\\\ (-\\\\Delta)^{s} v (x)= g(u,\\\\,v), \\\\end{array} \\\\right. \\\\end{equation}</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_eqn1.png\\\"/></span>in two different types of domains, one is bounded, and the other is an infinite cylinder, where <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$0< s<1$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline1.png\\\"/></span></span>. We employ the direct sliding method for fractional Laplacian, different from the conventional extension and moving planes methods, to derive the monotonicity of solutions for (0.1) in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$x_n$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223140551915-0053:S0308210524000106:S0308210524000106_inline2.png\\\"/></span></span> variable. Meanwhile, we develop a new iteration method for systems in the proofs. Hopefully, the iteration method can also be applied to solve other problems.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑以下涉及分数拉普拉奇的非线性系统0.\(-\Delta)^{s} u (x)= f(u,\,v), (-\Delta)^{s} v (x)= g(u,\,v), end{array}\是的\end{equation}在两种不同类型的域中,一种是有界域,另一种是无限圆柱体,其中$0< s<1$。我们采用有别于传统的扩展法和移动平面法的分数拉普拉斯直接滑动法,推导出(0.1)在$x_n$变量中的解的单调性。同时,我们在证明中发展了一种新的系统迭代法。希望迭代法也能应用于解决其他问题。
Qualitative properties of solutions for system involving the fractional Laplacian
In this paper, we consider the following non-linear system involving the fractional Laplacian0.1\begin{equation} \left\{\begin{array}{@{}ll} (-\Delta)^{s} u (x)= f(u,\,v), \\ (-\Delta)^{s} v (x)= g(u,\,v), \end{array} \right. \end{equation}in two different types of domains, one is bounded, and the other is an infinite cylinder, where $0< s<1$. We employ the direct sliding method for fractional Laplacian, different from the conventional extension and moving planes methods, to derive the monotonicity of solutions for (0.1) in $x_n$ variable. Meanwhile, we develop a new iteration method for systems in the proofs. Hopefully, the iteration method can also be applied to solve other problems.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.