除法多项式的常见估值

IF 1.3 3区 数学 Q1 MATHEMATICS
Bartosz Naskręcki, Matteo Verzobio
{"title":"除法多项式的常见估值","authors":"Bartosz Naskręcki, Matteo Verzobio","doi":"10.1017/prm.2024.7","DOIUrl":null,"url":null,"abstract":"<p>In this note, we prove a formula for the cancellation exponent <span><span><span data-mathjax-type=\"texmath\"><span>$k_{v,n}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline1.png\"/></span></span> between division polynomials <span><span><span data-mathjax-type=\"texmath\"><span>$\\psi _n$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline2.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$\\phi _n$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline3.png\"/></span></span> associated with a sequence <span><span><span data-mathjax-type=\"texmath\"><span>$\\{nP\\}_{n\\in \\mathbb {N}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline4.png\"/></span></span> of points on an elliptic curve <span><span><span data-mathjax-type=\"texmath\"><span>$E$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline5.png\"/></span></span> defined over a discrete valuation field <span><span><span data-mathjax-type=\"texmath\"><span>$K$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline6.png\"/></span></span>. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"14 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common valuations of division polynomials\",\"authors\":\"Bartosz Naskręcki, Matteo Verzobio\",\"doi\":\"10.1017/prm.2024.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we prove a formula for the cancellation exponent <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$k_{v,n}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline1.png\\\"/></span></span> between division polynomials <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\psi _n$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline2.png\\\"/></span></span> and <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\phi _n$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline3.png\\\"/></span></span> associated with a sequence <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{nP\\\\}_{n\\\\in \\\\mathbb {N}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline4.png\\\"/></span></span> of points on an elliptic curve <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$E$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline5.png\\\"/></span></span> defined over a discrete valuation field <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240223151238591-0447:S0308210524000076:S0308210524000076_inline6.png\\\"/></span></span>. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们证明了一个公式,即与定义在离散估值域 $K$ 上的椭圆曲线 $E$ 上的点序列 $\{nP\}_{n\in \mathbb {N}}$ 相关的除法多项式 $\psi _n$ 和 $\phi _n$ 之间的抵消指数 $k_{v,n}$。这个公式极大地推广了之前已知的特殊情况,并处理了非完全残差域的非标准柯达伊拉类型的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common valuations of division polynomials

In this note, we prove a formula for the cancellation exponent $k_{v,n}$ between division polynomials $\psi _n$ and $\phi _n$ associated with a sequence $\{nP\}_{n\in \mathbb {N}}$ of points on an elliptic curve $E$ defined over a discrete valuation field $K$. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信