论二维多流体力学方程中库特附近剪切流的索波列夫稳定阈值

IF 1.3 3区 数学 Q1 MATHEMATICS
Ting Chen, Ruizhao Zi
{"title":"论二维多流体力学方程中库特附近剪切流的索波列夫稳定阈值","authors":"Ting Chen, Ruizhao Zi","doi":"10.1017/prm.2024.6","DOIUrl":null,"url":null,"abstract":"In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\alpha,0 )^\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline1.png\" /> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathbb {T}\\times \\mathbb {R}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline2.png\" /> </jats:alternatives> </jats:inline-formula>. More precisely, for sufficiently large <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, we show that when the initial datum of the shear flow satisfies <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\left \\| U(y)-y\\right \\|_{H^{N+6}}\\ll 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline4.png\" /> </jats:alternatives> </jats:inline-formula>, with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N&gt;1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline5.png\" /> </jats:alternatives> </jats:inline-formula>, and the initial perturbations <jats:inline-formula> <jats:alternatives> <jats:tex-math>${u}_{\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline6.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>${b}_{\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline7.png\" /> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\left \\| ( {u}_{\\mathrm {in}},{b}_{\\mathrm {in}}) \\right \\| _{H^{N+1}}=\\epsilon \\ll \\nu ^{\\frac 56+\\tilde \\delta }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline8.png\" /> </jats:alternatives> </jats:inline-formula> for any fixed <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\tilde \\delta &gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline9.png\" /> </jats:alternatives> </jats:inline-formula>, then the solution of the 2D MHD equations remains <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\nu ^{-(\\frac {1}{3}+\\frac {\\tilde \\delta }{2})}\\epsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline10.png\" /> </jats:alternatives> </jats:inline-formula>-close to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$( e^{\\nu t \\partial _{yy}}U(y),0)^\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline11.png\" /> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t&gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline12.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations\",\"authors\":\"Ting Chen, Ruizhao Zi\",\"doi\":\"10.1017/prm.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\\\alpha,0 )^\\\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathbb {T}\\\\times \\\\mathbb {R}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula>. More precisely, for sufficiently large <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula>, we show that when the initial datum of the shear flow satisfies <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\left \\\\| U(y)-y\\\\right \\\\|_{H^{N+6}}\\\\ll 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula>, with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N&gt;1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula>, and the initial perturbations <jats:inline-formula> <jats:alternatives> <jats:tex-math>${u}_{\\\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>${b}_{\\\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\left \\\\| ( {u}_{\\\\mathrm {in}},{b}_{\\\\mathrm {in}}) \\\\right \\\\| _{H^{N+1}}=\\\\epsilon \\\\ll \\\\nu ^{\\\\frac 56+\\\\tilde \\\\delta }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline8.png\\\" /> </jats:alternatives> </jats:inline-formula> for any fixed <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\tilde \\\\delta &gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline9.png\\\" /> </jats:alternatives> </jats:inline-formula>, then the solution of the 2D MHD equations remains <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\nu ^{-(\\\\frac {1}{3}+\\\\frac {\\\\tilde \\\\delta }{2})}\\\\epsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline10.png\\\" /> </jats:alternatives> </jats:inline-formula>-close to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$( e^{\\\\nu t \\\\partial _{yy}}U(y),0)^\\\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline11.png\\\" /> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t&gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline12.png\\\" /> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了在二维不可压缩磁流体动力学(MHD)方程中,背景磁场$(\alpha,0 )^\top$在$\mathbb {T}\times\mathbb {R}$上的剪切流在Couette附近的Sobolev稳定性。更确切地说,对于足够大的 $\alpha$ ,我们证明当剪切流的初始基准满足 $\left\| U(y)-y\right \|_{H^{N+6}}\ll 1$ 时,有 $N>;1$ ,初始扰动 ${u}_{mathrm {in}}$ 和 ${b}_{mathrm {in}}$ 满足 $left \| ( {u}_{mathrm {in}}、{b}_{\mathrm {in}}) _{H^{N+1}}=epsilon \ll \nu ^{frac 56+tilde \delta }$ 对于任意固定的 $\tilde \delta >;0$ ,那么二维 MHD方程的解仍然是 $\nu ^{-(\frac {1}{3}+\frac {tilde\delta }{2})}epsilon$ -close to $( e^{\nu t \partial _{yy}}U(y),0)^\top$ for all $t>0$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations
In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field $(\alpha,0 )^\top$ on $\mathbb {T}\times \mathbb {R}$ . More precisely, for sufficiently large $\alpha$ , we show that when the initial datum of the shear flow satisfies $\left \| U(y)-y\right \|_{H^{N+6}}\ll 1$ , with $N>1$ , and the initial perturbations ${u}_{\mathrm {in}}$ and ${b}_{\mathrm {in}}$ satisfy $\left \| ( {u}_{\mathrm {in}},{b}_{\mathrm {in}}) \right \| _{H^{N+1}}=\epsilon \ll \nu ^{\frac 56+\tilde \delta }$ for any fixed $\tilde \delta >0$ , then the solution of the 2D MHD equations remains $\nu ^{-(\frac {1}{3}+\frac {\tilde \delta }{2})}\epsilon$ -close to $( e^{\nu t \partial _{yy}}U(y),0)^\top$ for all $t>0$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信