求助PDF
{"title":"论二维多流体力学方程中库特附近剪切流的索波列夫稳定阈值","authors":"Ting Chen, Ruizhao Zi","doi":"10.1017/prm.2024.6","DOIUrl":null,"url":null,"abstract":"In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\alpha,0 )^\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline1.png\" /> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathbb {T}\\times \\mathbb {R}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline2.png\" /> </jats:alternatives> </jats:inline-formula>. More precisely, for sufficiently large <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, we show that when the initial datum of the shear flow satisfies <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\left \\| U(y)-y\\right \\|_{H^{N+6}}\\ll 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline4.png\" /> </jats:alternatives> </jats:inline-formula>, with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N>1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline5.png\" /> </jats:alternatives> </jats:inline-formula>, and the initial perturbations <jats:inline-formula> <jats:alternatives> <jats:tex-math>${u}_{\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline6.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>${b}_{\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline7.png\" /> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\left \\| ( {u}_{\\mathrm {in}},{b}_{\\mathrm {in}}) \\right \\| _{H^{N+1}}=\\epsilon \\ll \\nu ^{\\frac 56+\\tilde \\delta }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline8.png\" /> </jats:alternatives> </jats:inline-formula> for any fixed <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\tilde \\delta >0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline9.png\" /> </jats:alternatives> </jats:inline-formula>, then the solution of the 2D MHD equations remains <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\nu ^{-(\\frac {1}{3}+\\frac {\\tilde \\delta }{2})}\\epsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline10.png\" /> </jats:alternatives> </jats:inline-formula>-close to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$( e^{\\nu t \\partial _{yy}}U(y),0)^\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline11.png\" /> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t>0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000064_inline12.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations\",\"authors\":\"Ting Chen, Ruizhao Zi\",\"doi\":\"10.1017/prm.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\\\alpha,0 )^\\\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathbb {T}\\\\times \\\\mathbb {R}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula>. More precisely, for sufficiently large <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula>, we show that when the initial datum of the shear flow satisfies <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\left \\\\| U(y)-y\\\\right \\\\|_{H^{N+6}}\\\\ll 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula>, with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N>1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula>, and the initial perturbations <jats:inline-formula> <jats:alternatives> <jats:tex-math>${u}_{\\\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>${b}_{\\\\mathrm {in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\left \\\\| ( {u}_{\\\\mathrm {in}},{b}_{\\\\mathrm {in}}) \\\\right \\\\| _{H^{N+1}}=\\\\epsilon \\\\ll \\\\nu ^{\\\\frac 56+\\\\tilde \\\\delta }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline8.png\\\" /> </jats:alternatives> </jats:inline-formula> for any fixed <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\tilde \\\\delta >0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline9.png\\\" /> </jats:alternatives> </jats:inline-formula>, then the solution of the 2D MHD equations remains <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\nu ^{-(\\\\frac {1}{3}+\\\\frac {\\\\tilde \\\\delta }{2})}\\\\epsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline10.png\\\" /> </jats:alternatives> </jats:inline-formula>-close to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$( e^{\\\\nu t \\\\partial _{yy}}U(y),0)^\\\\top$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline11.png\\\" /> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t>0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000064_inline12.png\\\" /> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations
In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field $(\alpha,0 )^\top$ on $\mathbb {T}\times \mathbb {R}$ . More precisely, for sufficiently large $\alpha$ , we show that when the initial datum of the shear flow satisfies $\left \| U(y)-y\right \|_{H^{N+6}}\ll 1$ , with $N>1$ , and the initial perturbations ${u}_{\mathrm {in}}$ and ${b}_{\mathrm {in}}$ satisfy $\left \| ( {u}_{\mathrm {in}},{b}_{\mathrm {in}}) \right \| _{H^{N+1}}=\epsilon \ll \nu ^{\frac 56+\tilde \delta }$ for any fixed $\tilde \delta >0$ , then the solution of the 2D MHD equations remains $\nu ^{-(\frac {1}{3}+\frac {\tilde \delta }{2})}\epsilon$ -close to $( e^{\nu t \partial _{yy}}U(y),0)^\top$ for all $t>0$ .