On the Γ-convergence of the Allen–Cahn functional with boundary conditions

IF 1.3 3区 数学 Q1 MATHEMATICS
Dimitrios Gazoulis
{"title":"On the Γ-convergence of the Allen–Cahn functional with boundary conditions","authors":"Dimitrios Gazoulis","doi":"10.1017/prm.2024.4","DOIUrl":null,"url":null,"abstract":"We study minimizers of the Allen–Cahn system. We consider the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\varepsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000040_inline2.png\" /> </jats:alternatives> </jats:inline-formula>-energy functional with Dirichlet values and we establish the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Gamma$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000040_inline3.png\" /> </jats:alternatives> </jats:inline-formula>-limit. The minimizers of the limiting functional are closely related to minimizing partitions of the domain. Finally, utilizing that the triod and the straight line are the only minimal cones in the plane together with regularity results for minimal curves, we determine the precise structure of the minimizers of the limiting functional, and thus the limit of minimizers of the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\varepsilon$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000040_inline4.png\" /> </jats:alternatives> </jats:inline-formula>-energy functional as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\varepsilon \\rightarrow 0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000040_inline5.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"151 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study minimizers of the Allen–Cahn system. We consider the $\varepsilon$ -energy functional with Dirichlet values and we establish the $\Gamma$ -limit. The minimizers of the limiting functional are closely related to minimizing partitions of the domain. Finally, utilizing that the triod and the straight line are the only minimal cones in the plane together with regularity results for minimal curves, we determine the precise structure of the minimizers of the limiting functional, and thus the limit of minimizers of the $\varepsilon$ -energy functional as $\varepsilon \rightarrow 0$ .
关于具有边界条件的艾伦-卡恩函数的Γ收敛性
我们研究艾伦-卡恩系统的最小化。我们考虑了具有 Dirichlet 值的 $\varepsilon$ 能量函数,并建立了 $\Gamma$ 极限。极限函数的最小化与域的最小化分区密切相关。最后,利用三角形和直线是平面中唯一的极小圆锥以及极小曲线的正则性结果,我们确定了极限函数极小化的精确结构,从而确定了当 $\varepsilon \rightarrow 0$ 时 $\varepsilon$ 能量函数极小化的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信